Genus one String Amplitudes from Conformal Field Theory

Luis Fernando Alday

University of Oxford

String Math 2019 - Uppsala

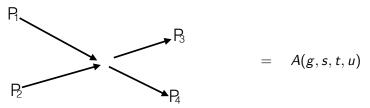
What will this talk be about?

Conformal Field Theories techniques to study Scattering Amplitudes in theories of Gravity/String Theory.

Based on work with A. Bissi and E. Perlmutter.

Scattering amplitudes

Scattering Amplitudes: Probability that two particles colliding (with momenta p_1, p_2) result into two other particles (with momenta p_3, p_4).



- A(g, s, t, u) depends on many things:
 - Which particles you are scattering (their masses, charges, etc)
 - ullet The parameters of your theory g.
 - The momenta of the particles being scattered:

$$s = -(p_1 + p_2)^2$$
, $t = -(p_1 - p_3)^2$, $u = -(p_1 - p_4)^2$

Scattering amplitudes

Why scattering amplitudes?

- They can teach us much about the symmetries a theory.
 - Dual conformal symmetry.
 - Duality with Wilson loops.
 - Color/kinematic duality.
- Beautiful mathematical structures can be uncovered.
 - Twistor methods.
 - The positive grassmanian.
- They allow to test the predictions of our theory.

Scattering amplitudes in pure gravity

General Relativity: Einstein Hilbert Lagrangian

$$\mathcal{L}_{EH}[g] = rac{1}{G_N} \sqrt{-g} \mathcal{R}$$

Consider a scattering process: $g_{\mu\nu}=\eta_{\mu\nu}+\sqrt{G_N}h_{\mu\nu}$

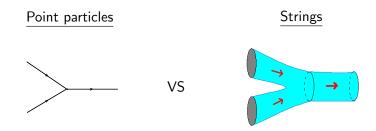
$$\mathcal{L}_{EH} = (\partial h)^2 + \sqrt{G_N} h (\partial h)^2 + ...$$

Scattering of gravitons:

• UV divergences: the gravitons get too close to each other!

String theory and UV divergences

• Replace gravitons by closed strings of finite length $\sqrt{\alpha'}$



• At low energies, $p^2 \ll 1/\alpha'$ we recover GR (or SUGRA).

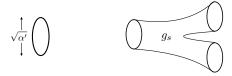
GR as an effective field theory

$$\mathcal{L} = (\partial h)^2 + \sqrt{G_N} \left(h(\partial h)^2 + \alpha'^{1/2} h^2 (\partial h)^2 + \alpha' h(\partial h)^3 + \cdots \right)$$

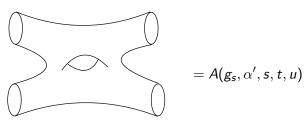
At high energies stringy corrections give a UV completion of GR!

String theory scattering amplitudes

• In string theory we have two parameters

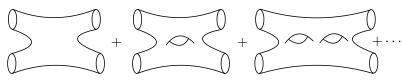


We would like to compute scattering amplitudes



String theory scattering amplitudes

• The computation organises in a genus expansion



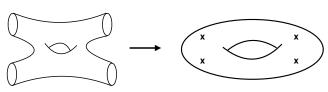
$$A^{(genus\ 0)}(\alpha',s,t,u)+g_s^2A^{(genus\ 1)}(\alpha',s,t,u)+g_s^4A^{(genus\ 2)}(\alpha',s,t,u)+\cdots$$

At genus zero and in flat space: Virasoro-Shapiro amplitude

$$A^{(genus\ 0)}(\alpha',s,t,u) = \frac{\Gamma(-\frac{\alpha's}{4})\Gamma(-\frac{\alpha't}{4})\Gamma(-\frac{\alpha'u}{4})}{\Gamma(1+\frac{\alpha's}{4})\Gamma(1+\frac{\alpha't}{4})\Gamma(1+\frac{\alpha'u}{4})}$$

Genus one in flat space

 Even in flat space higher genus terms are notoriously hard to compute!



$$A^{(genus\ 1)}(\alpha',s,t,u) = \int_{\mathcal{F}} \frac{d\tau_1 d\tau_2}{\tau_2^2} F(s,t,u;\tau)$$

$$F(s,t,u;\tau) = \int d\nu_1 d\nu_2 d\nu_3 d\nu_4 \left| \frac{\theta_1(\nu_1 - \nu_2 | \tau)}{\theta_1'(0|\tau)} \right|^{2\alpha' s} \cdots \left| \frac{\theta_1(\nu_2 - \nu_4 | \tau)}{\theta_1'(0|\tau)} \right|^{2\alpha' u}$$

- For curved space time, we have not idea how to do this!
- We will use an alternative approach! (based on two tools)

First tool

AdS/CFT duality

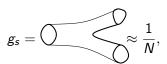
String theory on $AdS_5 imes S^5$

Parameters: g_s and R.

- \Leftrightarrow Quantum field theory living in the 4d boundary of AdS_5
 - $\mathcal{N}=4$ Super conformal Yang-Mills, with SU(N) gauge group.
 - Most symmetric 4d theory!

Pameters: g_{YM} and N.

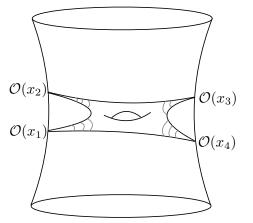
Dictionary



$$\stackrel{\sim}{\sim} \frac{1}{N}, \qquad \frac{R^2}{\alpha'} = \sqrt{g_{YM}^2 N} \equiv \sqrt{\lambda}$$

AdS/CFT duality

String amplitudes on $AdS_5 \times S^5 \leftrightarrow$ correlators of local operators!



$$A(g_s, \frac{\alpha'}{R^2}, s, t, u) \leftrightarrow \langle \mathcal{O}(x_1)\mathcal{O}(x_2)\mathcal{O}(x_3)\mathcal{O}(x_4) \rangle$$

Dictionary

String Amplitudes on $AdS_5 \times S^5$	Correlators in $\mathcal{N} = 4$ SYM
Genus expansion	1/N expansion
Stringy corrections to Sugra	$1/\lambda$ corrections
Graviton on AdS	\mathcal{O}_2 : protected scalar of dim. 2 in the stress-tensor multiplet
KK modes on S^5	\mathcal{O}_p : protected ops of dim. p

- Compute $\langle \mathcal{O}_2(x_1)\mathcal{O}_2(x_2)\mathcal{O}_2(x_3)\mathcal{O}_2(x_4)\rangle$ in a 1/N and $1/\lambda$ expansion.
- Thanks to our second tool: the analytic bootstrap!

CFT basics

Main ingredient:

• Conformal Primary local operators: $\mathcal{O}_{\Delta,\ell}(x)$, plus descendants $\partial_{\mu_{\ell}}...\partial_{\mu_{1}}\mathcal{O}_{\Delta,\ell}$

Dimension

Lorentz spin

Main observable:

Correlation functions of primary operators

$$\langle \mathcal{O}_1(x_1)...\mathcal{O}_n(x_n)\rangle$$

Four-point function of identical operators:

$$\langle \mathcal{O}(x_1)\mathcal{O}(x_2)\mathcal{O}(x_3)\mathcal{O}(x_4)\rangle = \frac{\mathcal{G}(u,v)}{x_{12}^{2\Delta_{\mathcal{O}}}x_{34}^{2\Delta_{\mathcal{O}}}}$$

where
$$u = \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2}$$
, $v = \frac{x_{14}^2 x_{23}^2}{x_{13}^2 x_{24}^2}$

CFT basics

Crossing symmetry

$$v^{\Delta_{\mathcal{O}}}\mathcal{G}(u,v) \underbrace{=}_{x_1 \leftrightarrow x_3} u^{\Delta_{\mathcal{O}}}\mathcal{G}(v,u) \underbrace{=}_{x_1 \leftrightarrow x_4} v^{2\Delta_{\mathcal{O}}}\mathcal{G}(\frac{u}{v},\frac{1}{v})$$

Conformal partial wave decomposition

$$\mathcal{G}(u,v) = \sum_{\mathcal{O}_{\Delta,\ell}} \sum_{1}^{2} \frac{\mathcal{O}_{\Delta,\ell}}{c_{\mathcal{O}_{\Delta,\ell}}} c_{\mathcal{O}_{\Delta,\ell}}$$

$$\mathcal{G}(u,v) = \sum_{\mathcal{O}_{\Delta,\ell}} c_{\Delta,\ell}^2 \underbrace{u^{rac{\Delta-\ell}{2}} g_{\Delta,\ell}(u,v)}_{ ext{conformal blocks}}$$

Let's combine the two...

Crossing or Bootstrap equation

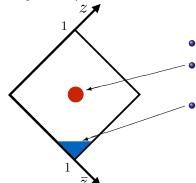
A remarkable...but hard equation!

$$v^{\Delta_{\mathcal{O}}} \sum_{\Delta,\ell} c_{\Delta,\ell}^2 u^{\frac{\Delta-\ell}{2}} g_{\Delta,\ell}(u,v) = u^{\Delta_{\mathcal{O}}} \sum_{\Delta,\ell} c_{\Delta,\ell}^2 v^{\frac{\Delta-\ell}{2}} g_{\Delta,\ell}(v,u)$$

Easy to expand around u = 0, v = 1

Easy to expand around u = 1, v = 0

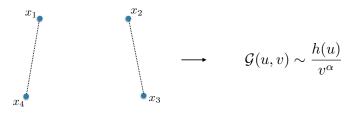
Study this equation in different regions, $u=z\bar{z}, v=(1-z)(1-\bar{z})$



- In the Euclidean regime $\bar{z} = z^*$.
- We can study crossing around $u = v = \frac{1}{4}$ (numerical bootstrap)
- In the Lorentzian regime z, \bar{z} are independent real variables and we can consider $u, v \to 0$ (analytic bootstrap)

Analytic bootstrap

- In Minkowski space we can have $x_{23}^2 \to 0, x_{23} \neq 0$ (small v, any u)
- When some operators become null-separated the correlator develops singularities:



• The whole correlator can be reconstructed from these singularities!

LSPT/Inversion formula [L.F.A.; Caron-Huot]

$$G(u, v) = \int du dv K(u, v) sing[G(u, v)] +$$
ambiguities

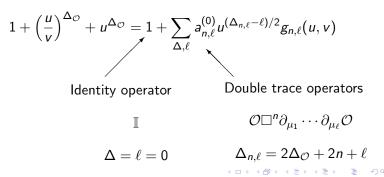
Hence the spectrum and OPE coef. of intermediate operators.

Generalised free fields

ullet Starting point - Generalised free fields (CFTs at $N=\infty$)

$$\mathcal{G}^{(0)}(u,v) = 1 + \left(\frac{u}{v}\right)^{\Delta_{\mathcal{O}}} + u^{\Delta_{\mathcal{O}}}$$

• Intermediate operators:



Example: Generalised free fields

• Note the answer diverges as $v \to 0$:

$$\mathcal{G}^{(0)}(u,v) \sim \left(\frac{u}{v}\right)^{\Delta_{\mathcal{O}}}$$

 This singularity arises (via crossing) from the presence of the identity in the crossed channel:

$$\mathcal{G}^{(0)}(u,v) = \left(\frac{u}{v}\right)^{\Delta_{\mathcal{O}}} \mathcal{G}^{(0)}(v,u) = \left(\frac{u}{v}\right)^{\Delta_{\mathcal{O}}} (1+\cdots)$$

- We could have reconstructed the whole correlator from this!
- Use this idea to compute $1/N^2$ corrections to GFF.

$$G(u,v) = G^{(0)}(u,v) + \frac{1}{N^2}G^{(1)}(u,v) + \frac{1}{N^4}G^{(2)}(u,v) + \cdots$$

How does this map to AdS?

Large N CFTs

AdS/CFT

Large N CFT in D-dimensions (GFF + corrections)

 \Leftrightarrow Gravitational theory in AdS_{D+1}

 $\frac{1}{N^2}$ expansion in CFT \leftrightarrow genus/loops in AdS

$$\mathcal{G} = \bigcup_{N^0} + \bigcup_{1/N^2} + \bigcup_{1/N^4} + \dots$$

• Direct computations in AdS are hard...Let's use CFT!

$$G(u,v) = G^{(0)}(u,v) + \left[\frac{1}{N^2}G^{(1)}(u,v)\right] + \frac{1}{N^4}G^{(2)}(u,v) + \cdots$$

Two Sources of corrections

Double trace operators will acquire corrections:

$$\Delta_{n,\ell} - \ell = 2\Delta_{\mathcal{O}} + 2n + \frac{1}{N^2} \gamma_{n,\ell}^{(1)} + \cdots$$

$$a_{n,\ell} = a_{n,\ell}^{(0)} + \frac{1}{N^2} a_{n,\ell}^{(1)} + \cdots$$

② We can also have new intermediate operators at order $1/N^2$.

Which corrections are consistent with crossing symmetry and the structure of null singularities?

Exchange solutions

In holographic CFT's we have the stress tensor (dual to the graviton)

$$\mathcal{O} imes \mathcal{O} = 1 + [\mathcal{O}, \mathcal{O}]_{n,\ell} + rac{1}{N^2} \mathcal{T}_{\mu
u}$$

• $T_{\mu\nu}$ in the crossed channel produces a precise divergence in the null limit:

$$\mathcal{G}^{(1)}(u,v) = \left(\frac{u}{v}\right)^{\Delta_{\mathcal{O}}} \mathcal{G}^{(1)}(v,u) \supset \left(\frac{u}{v}\right)^{\Delta_{\mathcal{O}}} v^{\frac{d-2}{2}} g_{\mathcal{T}}(v,u)$$

- From this divergence we can fix $\gamma_{n,\ell}^{(1)}, a_{n,\ell}^{(1)}$!
- This solution corresponds to AdS graviton exchange

$$\mathcal{G}^{(1)}_{grav}(u,v)$$
 \sim

Truncated solutions

- In addition homogenous solutions to crossing with no extra null divergence (corresponding to the ambiguities)
- 'Truncated' $\gamma_{n,\ell}^{(1)}, a_{n,\ell}^{(1)}$ with finite support in the spin.
- Truncated solutions ↔ local interactions in the AdS bulk.
 [Heemskerk, Penedones, Polchinski, Sully]

$$\mathcal{G}^{(1)}_{trunc}(u,v) \sim$$

$$G(u,v) = G^{(0)}(u,v) + \frac{1}{N^2}G^{(1)}(u,v) + \left[\frac{1}{N^4}G^{(2)}(u,v)\right] + \cdots$$

• To order $1/N^4$ null divergences arise from the square of anomalous dimensions:

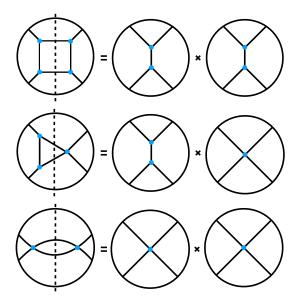
$$div \left[\left(\frac{u}{v} \right)^{\Delta_{\mathcal{O}}} \sum_{n,\ell} v_{n,\ell}^{\Delta_{\mathcal{O}} + \frac{1}{N^2} \gamma^{(1)}} g_{n,\ell}(v,u) \right] \sim \frac{\log^2 v}{N^4} \sum_{n,\ell} \left(\gamma_{n,\ell}^{(1)} \right)^2 g_{n,\ell}(v,u)$$

• Given $\left(\gamma_{n,\ell}^{(1)}\right)^2$ we can reconstruct $\mathcal{G}^{(2)}(u,v)!$

$$\left(\gamma^{(1)}\right)^2 = \left(\gamma^{(1)}_{\mathit{grav}} + \gamma^{(1)}_{\mathit{trunc}}\right)^2 = \gamma^{(1)}_{\mathit{grav}} \times \gamma^{(1)}_{\mathit{grav}} + \gamma^{(1)}_{\mathit{grav}} \times \gamma^{(1)}_{\mathit{trunc}} + \gamma^{(1)}_{\mathit{trunc}} \times \gamma^{(1)}_{\mathit{trunc}}$$

leads to the following contributions

Contributions to order $1/N^4$



Double expansion in $\mathcal{N}=4$ SYM

 $\mathcal{N}=4$ SYM falls into this category! with the following structure

$$\mathcal{G}^{(0)}(u,v) + \frac{1}{N^2} \left(\mathcal{G}^{(1)}_{grav}(u,v) + \frac{1}{\lambda^{3/2}} \mathcal{G}^{(1)}_{st}(u,v) + \cdots \right) + \frac{1}{N^4} \left(\mathcal{G}^{(2)}_{grav}(u,v) + \frac{1}{\lambda^{3/2}} \mathcal{G}^{(2)}_{st}(u,v) + \cdots \right)$$

We can compute all these contributions!

The string amplitude in $AdS_5 \times S^5$ is M(s,t,u)

$$\mathcal{G}(U,V) = \int_{-i\infty}^{i\infty} ds dt U^s V^t M(s,t,u) \Gamma^2(2-s) \Gamma^2(2-t) \Gamma^2(2-u)$$

where s + t + u = 2

- Crossing symmetry $\rightarrow M(s, t, u)$ is completely symmetric.
- Gravity solution $\rightarrow M(s, t, u)$ a meromorphic function:

$$M_{sugra}^{(1)}(s,t,u) = \frac{1}{(s-1)(t-1)(u-1)}$$

• Truncated solutions/stringy corrections $\rightarrow M(s, t, u)$ is a polynomial. Nice basis

$$\sigma_2 = s^2 + t^2 + u^2, \quad \sigma_3 = s^3 + t^3 + u^3$$

Mellin space

Genus zero expansion:

$$M^{genus\ 0}(s,t,u) = \frac{1}{(s-1)(t-1)(u-1)} + \alpha'^3 a + \alpha'^5 (b\sigma_2 + b_1) + \alpha'^6 (c\sigma_3 + c_1\sigma_2 + c_2) + \cdots$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$gravity \qquad \mathcal{R}^4 \qquad \partial^4 \mathcal{R}^4 \qquad \partial^6 \mathcal{R}^4$$

Flat space limit: $s, t, u \to \infty, \alpha' \to 0$ with $s\alpha', t\alpha', u\alpha' \sim fixed$

Genus 0 flat space limit

$$M^{genus~0}(s,t,u)
ightarrow rac{1}{stu} + lpha'^3 a + lpha'^5 b \sigma_2 + lpha'^6 c \sigma_3 = ext{VS amplitude}$$

• b_1, c_1, c_2 are curvature corrections [recently fixed in a beautiful paper by Binder, Chester, Pufu, and Wang]

Mellin space and flat space limit

Genus-one string amplitude on $AdS_5 \times S^5$ in a lpha' expansion

$$M_{grav.}^{genus\ 1}(s,t,u) + lpha'^3 M_{st,1}^{genus\ 1}(s,t,u) + lpha'^5 M_{st,2}^{genus\ 1}(s,t,u) + \cdots$$

$$M_{grav.}^{genus\ 1}(s,t,u) = \sum_{m,n=2} \left(\frac{c_{mn}}{(s-2m)(t-2n)} + \operatorname{crossed} \right)$$
 $M_{st,1}^{genus\ 1}(s,t,u) = P(s,t,u)\psi_0\left(2-\frac{s}{2}\right) + \operatorname{crossed}$

In the flat space limit they simplify a lot!

$$M_{grav.}^{genus\ 1}(s,t,u) \rightarrow \text{Box function in 10D}$$
 $M_{st,1}^{genus\ 1}(s,t,u) \rightarrow s^4 \log s + t^4 \log t + u^4 \log u$
 $M_{st,1}^{genus\ 1}(s,t,u) \rightarrow (87s^6 + s^4(t-u)^2) \log s + \cdots$

• Agrees exactly with the known results! [Green, Russo, Vanhove]

Conclusions

- We have presented the first genus one computation of a string theory amplitude in curved space-time.
- Together with the paper by Binder at. al. this provides the first genus one precision test of AdS/CFT.
- We can answer detailed questions, such as the structure of UV divergences, and in the flat space limit we recover the known structure.
- Can we now start asking quantitative questions about quantum gravity/string theory on curved spaces?
 - What is the space of modular functions that can appear?
 - What can we say about vertex operators in curved space?

