New Aspects of Heterotic Geometry

Lara B. Anderson

Department of Physics, Virginia Tech

Work done in collaboration with: He Feng, arXiv:1607.04628 J. Gray, P. Oehlmann, and N. Raghuram, in progress

String Math 2019 – Uppsala University - July 2nd, 2019

Heterotic Geometry

- Heterotic EFT is closely tied to difficult questions in the geometry of Calabi-Yau manifolds, X, and vector bundles, $\pi: V \to X$:
 - $\bullet~{\rm SUSY} \to {\rm bundle}$ stability and holomorphy
 - Form of the 4D potential \rightarrow D-terms, Holomorphic Chern Simons theory, GKV Superpotential: $W \sim \int_X H \wedge \Omega$ with $H \sim dB - \omega_{3YM} + \omega_{3L}$
 - Massless spectra/couplings \rightarrow bundle valued cohomology, Yoneda products
- Difficult to "engineer" 4D theory of choice \Rightarrow large scale scans of pairs (X, V)
- Better "control" of geometry of heterotic bundles/manifolds would be very helpful
- Here control = better dictionary linking EFT and geometry.

- This talk: a repackaging of heterotic geometry that may shed light on redundancies in the space of heterotic vacua and make it easier to find models with given spectra, moduli,etc.
- Two hints of structure inspired this work:
- The heterotic moduli space naturally combines fluctuations of the background manifold and gauge fields (e.g. LA, Gray, Ovrut, Lukas, Sharpe, de la Ossa, Svanes, Hardy, Candelas, McOrist...).
- Heterotic "dualities" naturally mix moduli (and d.o.f) associated to manifolds and bundles (e.g. Distler, Kachru, Blumenhagen, Rahn, LA, Feng, etc)

Heterotic redundancies

- Want to better understand intriguing (0, 2) GLSM "Duality" from the '90s...
- Target Space Duality: Two (0,2) GLSMs which share a non-geometric (i.e. LG) vacuum. In this case, the two large volume limits (i.e. (X, V) and (X, V) give same apparent effective 4D spectrum (Distler, Kachru, Blumenhagen...):

$$\begin{aligned} h^{*}(X, \wedge^{k}V) &= h^{*}(\widetilde{X}, \wedge^{k}\widetilde{V}), \qquad k = 1, 2, \cdots, rk(V) \\ h^{2,1}(X) &+ h^{1,1}(X) + h^{1}_{X}(End_{0}(V)) = h^{2,1}(\widetilde{X}) + h^{1,1}(\widetilde{X}) + h^{1}_{X}(End_{0}(\widetilde{V})) \end{aligned}$$

- Different manifolds and vector bundles, but same physics?
- Landscape study: Blumenhagen and Rahn created $\sim 83,000$ TSD pairs and nearly all produced same 4D spectra ($\sim 90\%)$

- Currently GLSM combinatorics lead to theories with the same spectra. Are they actually the same NLSM? Possibilities:
 - (0,2) "Mirrors"? \Leftrightarrow Same sigma models, different geometries.
 - (0,2) Geometric transitions? (i.e. heterotic conifolds/flops). Branch structure in vacuum space?
 - Practically powerful tool (Might make it easier to find/characterize "interesting" heterotic vacua...). Remove redundancy.
 - Can this be understood purely in terms of geometry? $(X, V) \leftrightarrow (\tilde{X}, \tilde{V})$??
 - GLSM/NLSM and geometric understandings desired. Here will focus on the latter...

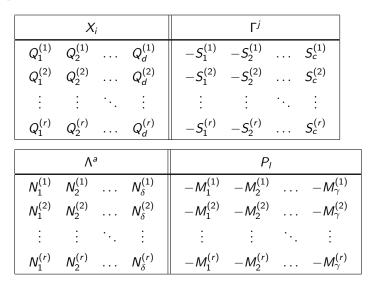
(0,2) GLSMs in a nutshell

- \bullet Abelian, massive 2D theory $\stackrel{\mathrm{IR \ flow}}{\longrightarrow}$ (0,2) CFT
- U(1) gauge fields $A^{(\alpha)}$, $\alpha = 1, \ldots r$
- Chiral superfields: $\{X_i | i = 1, ..., d\}$ charge $(Q_i^{(\alpha)}), \{P_l | l = 1, ..., \gamma\}$, charge $(-M_l^{\alpha})$.
- Fermi superfields: $\{\Lambda^a | a = 1..., \delta\}$ charge $N_a^{(\alpha)}$, $\{\Gamma_j^{(\alpha)} | j = 1...c\}$ charge $(-S_j^{(\alpha)})$.
- Gauge and gravitational anomaly cancellation:

$$\sum_{a=1}^{\delta} N_a^{(\alpha)} = \sum_{l=1}^{\gamma} M_l^{(\alpha)} \qquad \qquad \sum_{i=1}^{d} Q_i^{(\alpha)} = \sum_{j=1}^{c} S_j^{(\alpha)}$$
$$\sum_{j=1}^{\gamma} M_l^{(\alpha)} M_l^{(\beta)} - \sum_{a=1}^{\delta} N_a^{(\alpha)} N_a^{(\beta)} = \sum_{j=1}^{c} S_j^{(\alpha)} S_j^{(\beta)} - \sum_{i=1}^{d} Q_i^{(\alpha)} Q_i^{(\beta)}$$

for all $\alpha, \beta = 1, ..., r$.

We encapsulate all this information in a table:



The GLSM potential

- Superpotential: $S = \int d^2 z d\theta \left[\sum_j \Gamma^j G_j(X_i) + \sum_{I,a} P_I \Lambda^a F_a^I(X_i) \right]$
- G_j and $F_a^{\,\prime}$ are quasi-homogeneous polynomials w/ multi-degrees:

		G ^j	
<i>s</i> ₁	<i>s</i> ₂		S _c

	Fa ^l		
$M_1 - N_1$	$M_1 - N_2$		$M_1 - N_{\delta}$
$M_2 - N_1$	$M_2 - N_2$		$M_2 - N_{\delta}$
	:	·.	:
$M_{\gamma} - N_1$	$M_{\gamma} - N_2$		$M_{\gamma} - N_{\delta}$

- F-term: $V_F = \sum_j |G_j(x_i)|^2 + \sum_a |\sum_i p_i F_a^i(x_i)|^2$
- D-term: $V_D = \sum_{\alpha=1}^r \left(\sum_{i=1}^d Q_i^{(\alpha)} |x_i|^2 \sum_{l=1}^{\gamma} M_l^{(\alpha)} |p_l|^2 \xi^{(\alpha)} \right)^2$
- Transversality condition: $F'_a(x_i) = 0$ only when $x_i = 0 \ \forall i$
- FI Parameter $(\xi^{(\alpha)} \in \mathbb{R})$ controls the *phases*

- E.g. $\xi > 0 \Rightarrow G_j(X_i) = 0$ and $\langle P \rangle = 0 \Rightarrow$ Geometric phase.
- Geometry: (X, V) with X a CY and bundle described via a monad:

$$0 \to \mathcal{O}_{\mathcal{M}}^{\oplus_{\mathcal{V}_{\mathcal{V}}}} \xrightarrow{\otimes E_{i}^{a}} \oplus_{a=1}^{\delta} \mathcal{O}_{\mathcal{M}}(N_{a}) \xrightarrow{\otimes F_{a}^{l}} \oplus_{l=1}^{\gamma} \mathcal{O}_{\mathcal{M}}(M_{l}) \to 0$$

with $V = \frac{\ker(F_a^l)}{\operatorname{im}(E_a^a)}$

- E.g. $\xi < 0 \Rightarrow \langle p \rangle \neq 0 \Rightarrow$ Non-geometric phase
- E.g. Landau-Ginzburg orbifold w. superpotential:

$$\mathcal{W}(X_i, \Lambda^a, \Gamma^i) = \sum_j \Gamma^j G_j(X_i) + \sum_a \Lambda^a F_a(X_i)$$

• With multiple U(1)s, hybrid phases.

Target space duality (TSD)

- Observation (Distler, Kachru): In LG-phase, G and F on equal footing. Could be interchanged... $\sum_{i} \Gamma^{j} G_{j}(X_{i}) + \sum_{a} \Lambda^{a} F_{a}(X_{i})$
- Algorithm: Find phase with one $\langle p_I \rangle \neq 0$ for some I.
- Rescale: $\tilde{\Lambda}^{a_i} := \frac{\Gamma^{j_i}}{\langle \rho_1 \rangle}, \ \tilde{\Gamma}^{j_i} := \langle p_1 \rangle \Lambda^{a_i} \ \forall i = 1, \dots k \text{ s.t. } \sum_i ||G_{j_i}|| = \sum_i ||F_{a_i}||$
- Move to a region in bundle moduli space where Λ^{a_i} appear only with P_1 $\forall i \Rightarrow F_{a_i}^l = 0 \ \forall l \neq 1, \ i = 1, \dots k.$
- Leave non-geometric phase and define new Fermi superfields s.t. $||\tilde{\Lambda}^{a_i}|| = ||\Gamma^{j_i}|| - ||P_1|| \text{ and } ||\tilde{\Gamma}^{j_i}|| = ||\Lambda^{a_i}|| + ||P_1||.$
- Return to a generic pt. in moduli space to define new TS dual (0, 2) GLSM w/ new geometric phase: (\tilde{X}, \tilde{V}) .

Example

			×i				Ŀ		PJ				
0	0	0	1	1	1	1	-2	-2	1	0	0	2	-3
1	1	1	2	2	2	0	-4	-5	0	1	1	6	-8

• SU(3) bundle with

$$\begin{aligned} \dim(\mathcal{M}_0) &= h^{1,1}(X) + h^{2,1}(X) + h^1(\mathit{End}_0(V)) = 2 + 68 + 322 = 392, \\ h^*(V) &= (0, 120, 0, 0) \text{ (no. of } \mathbf{27}\text{'s)} \end{aligned}$$

- Here $||G_1|| = (2,4), ||G_2|| = (2,5), ||F_1^1|| = (2,8), ||F_2^1|| = (3,7),$ $||F_3^1|| = (3,7), ||F_4^1|| = (1,2)$
- $\bullet\,$ Sum of third and fourth F equals sum of two hypersurface degrees.
- Redefine: $\tilde{\Gamma}^1 = \langle p_1 \rangle \Lambda^3$, $\tilde{\Gamma}^2 = \langle p_1 \rangle \Lambda^4$, $\tilde{\Lambda}^3 = \frac{\Gamma^1}{\langle p_1 \rangle}$, $\tilde{\Lambda}^4 = \frac{\Gamma^2}{\langle p_1 \rangle}$, $\tilde{G} = F_3^1$, $\tilde{G}_2 = F_4^1$, $\tilde{F}_3^1 = G_1$, $\tilde{F}_4^1 = G_2$
- Superpotential: $\mathcal{W} = \tilde{\Gamma}^1 \tilde{G}_1 + \tilde{\Gamma}^2 \tilde{G}_2 + \langle p_1 \rangle (\tilde{\Lambda}^3 \tilde{F}_3^1 + \tilde{\Lambda}^4 \tilde{F}_4^1 + \Lambda^1 F_1^1 + \Lambda^2 F_2^1)$

Example

- $||\tilde{G}_1|| = (3,7), ||\tilde{G}_2|| = (1,2), ||\tilde{F}_3^1|| = (2,4), ||F_4^1|| = (2,5),$ $||\tilde{\Gamma}^1|| = (-3,-7), ||\tilde{\Gamma}^2|| = (-1,-2) ||\tilde{\Lambda}^3|| = (1,4), ||\tilde{\Lambda}^4|| = (1,3).$
- Leads to new geometry $(\widetilde{X}, \widetilde{V})$

			x	ï			г ^j			٨	а		PĮ
0)	0	0	1	1	1	-3	1		0	1	1	-3
1		1	1	2	2	0	-7	0)	1	4	3	-8

- $dim(\widetilde{\mathcal{M}}_0) = h^{1,1}(\widetilde{X}) + h^{2,1}(\widetilde{X}) + h^1(End_0(\widetilde{V})) = 2 + 95 + 295 = 392,$ $h^*(\widetilde{V}) = (0, 120, 0, 0)$
- Here $h^{1,1}$ stays fixed, complex structure and bundle moduli interchange.
- More general mixing possible...e.g. increase # of $U(1){\rm s} \to {\rm can}$ mix all moduli

• In 2011, Blumenhagen + Rahn performed a landscape scan. Tested duality by counting states:

 $h^{1,1}(X) + h^{2,1}(X) + h^1(End_0(V)) = h^{1,1}(\widetilde{X}) + h^{2,1}(\widetilde{X}) + h^1(End_0(\widetilde{V}))$

and charged matter in $\sim 80,000$ examples. Agreement in nearly all cases.

- Question: Can duality be tested (even in the geometric, perturbative regime) in more detail?
- Recall, these are N = 1 4D theories. Want more than $\dim(\mathcal{M}_0)... \Rightarrow$ Moduli can be obstructed.
- Can we compare the effective potential and vacuum space of the chain of dual theories?
- Must engineer examples with interesting/calculable potentials...

Engineering potentials...

 $\bullet\,$ Conditions for N=1 Supersymmetry in 4D: Hermitian-Yang Mills Eqns

$$F_{ab} = F_{\overline{a}\overline{b}} = 0, g^{a\overline{b}}F_{\overline{b}a} = 0$$

- $g^{a\overline{b}}F_{\overline{b}a} = 0 \Leftrightarrow$ Donaldson-Uhlenbeck-Yau Thm: V is slope (Mumford) poly-stable.
 - Slope: $\mu(V) \equiv \frac{1}{\operatorname{rk}(V)} \int_X c_1(V) \wedge \omega \wedge \omega$ where $\omega = t^k \omega_k$ is the Kahler form on X (ω_k a basis for $H^{1,1}(X)$).
 - V is Stable if for every sub-sheaf, $\mathcal{F} \subset V$, with $0 < rk(\mathcal{F}) < rk(V)$, $\mu(\mathcal{F}) < \mu(V)$
 - V is Poly-stable if $V = \bigoplus_i V_i$, V_i stable such that $\mu(V) = \mu(V_i) \ \forall i$
- $F_{ab} = F_{\overline{ab}} = 0$: V is holomorphic.
- Stability $\Leftrightarrow 4D$ D-terms
- Holomorphy $\Leftrightarrow 4D$ F-terms

(Work w/ H. Feng):

- Create bundles that are only stable or holomorphic for sub-loci in moduli space ⇒ what happens under TSD?
- $\bullet\,$ E.g. Strictly poly-stable bundle \Rightarrow 4D D-terms restrict Kähler moduli
- E.g. Bundle holomorphic only on a sub-locus in the complex structure moduli space of $X \Rightarrow 4D$ F-terms obstruct complex structure moduli.

			х	i			г ^j		Λ ^a						Pj			
Γ	1	1	0	0	0	0	-2	1	$^{-1}$	0	0	2	1	1	2	-3	$^{-1}$	-2
	0	0	1	1	1	1	-4	-1	1	1	1	1	2	2	2	-2	-4	-3

with initial total moduli count

$$dim(\mathcal{M}_0) = h^{1,1}(X) + h^{2,1}(X) + h^1(X, End_0(V)) = 2 + 86 + 340 = 428$$

- Naively: rk(V) = 5, $c_1(V) = 0 \Rightarrow SU(5)$ 4D theory.
- In fact, V stable only on a ray in Kähler moduli space $t^2=4t^1.$
- Only supersymmetric configuration of $V: V \to U_3 \oplus L \oplus L^{\vee} \le W/L = \mathcal{O}(1, -1).$

Features of interest

- Non-trivial D-term lifts one Kähler modulus. Reduction in moduli dim(M₁) = dim(M₀) - 1 = 427
- Non-Abelian Enhancement: Structure group is not SU(5), rather $S[U(1) \times U(1)] \times SU(3) \subset E_8 \Rightarrow SU(6) \times U(1)$, with U(1) symmetry Green-Schwarz massive.
- Bundle forced to locus w/ non-Abelian symmetry enhancement
- From the stability wall, can explore branch structure into nearby geometries $\Rightarrow \langle C_{bundle} \rangle \neq 0 \rightarrow$ deform to irreducible bundle. Higgsing $SU(6) \times U(1) \rightarrow SU(5)$
- How much of this is visible in the TS duals?
- In this case can construct a chain of 17 TS dual geometries w/ conifold-type "splits" $\rightarrow h^{1,1} + 1$. What do we get?...

One example of TSD dual:

	×į							Γ ^j Λ ^a					PI								
0)	0	0	0	0	0	1	1	-1	$^{-1}$	0	0	1	0	0	0	0	0	0	0	-1
1	L	1	0	0	0	0	0	0	-2	0	1	$^{-1}$	0	0	2	1	1	2	-3	$^{-1}$	-2
0)	0	1	1	1	1	0	0	-2	-2	$^{-1}$	1	-1	1	3	2	2	2	-2	-4	-3

Questions:

- Does $(\widetilde{X}, \widetilde{V})$ give rise to a stability wall? \checkmark
- Here $dim(\widetilde{\mathcal{M}}_0) = 429$? But $dim(\widetilde{\mathcal{M}}_1) = 427 \checkmark$
- O the structure group and charged matter spectra of the two theories match? ✓
- Does the vacuum branch structure (i.e. local deformation space) correspond? ✓... In general, find commutative diagram:

$$egin{array}{ccc} V_1 & \stackrel{dual}{\longrightarrow} & \widetilde{V}_1 \ \langle C
angle & \downarrow & \downarrow & \langle ilde{C}
angle \ V_2 & \stackrel{dual}{\longrightarrow} & \widetilde{V}_2 \end{array}$$

Holomorphic Vector bundles

- V holomorphic if $F_{ab} = F_{\bar{a}\bar{b}} = 0$
- Suppose we begin with a holomorphic bundle and then vary the complex structure? Must a bundle stay holomorphic for any variation $\delta \mathfrak{z}' v_l \in h^{2,1}(X)$? \Rightarrow No: Need $\delta \mathfrak{z}' v_{l[\bar{a}}^{\bar{a}} F^{(0)y}_{l[c]\bar{b}]} + 2D^{(0)}_{[\bar{a}} \delta A^y_{\bar{b}]} = 0$
- $0 \to V \otimes V^{\vee} \to \mathcal{Q} \xrightarrow{q} TX \to 0$ is known as the Atiyah sequence.
- The long exact sequence in cohomology gives us

$$0 \to H^1(V \otimes V^{\vee}) \to H^1(\mathcal{Q}) \stackrel{dq}{\to} H^1(TX) \stackrel{\alpha}{\to} H^2(V \otimes V^{\vee}) \to \dots$$

- If the map dq is surjective then $H^1(\mathcal{Q}) = H^1(V \otimes V^{\vee}) \oplus H^1(TX)$
- But dq not surjective in general! $H^1(\mathcal{Q}) = H^1(V \otimes V^{\vee}) \oplus Im(dq)$
- dq difficult to define, but by exactness, $Im(dq) = Ker(\alpha)$ where $\alpha = [F^{1,1}] \in H^1(V \otimes V^{\vee} \otimes TX^{\vee})$ is the Atiyah Class

There are three objects in deformation theory that we need

- Def(X): Deformations of X as a complex manifold. Infinitesimal defs parameterized by the vector space $H^1(TX) = H^{2,1}(X)$. These are the *complex structure* deformations of X.
- Def(V): The deformation space of V (changes in connection, δA) for fixed C.S. moduli. Infinitesimal defs measured by $H^1(End(V)) = H^1(V \otimes V^{\vee})$. These define the *bundle moduli* of V.
- Def(V, X): Simultaneous holomorphic deformations of V and X. The tangent space is $H^1(X, Q)$ where

$$0 \to V \otimes V^{\vee} \to \mathcal{Q} \xrightarrow{\pi} TX \to 0$$

If \mathcal{Z} is the (projectivized) total space of the bundle, $\mathcal{Q} = r_* T \mathcal{Z}$

(Donaldson) and $r : \mathbb{Z} \to X$.

GVW Superpotential and F-terms

- For the 4D Theory: Gukov-Vafa-Witten superpotential $W = \int_X \Omega \wedge H$ where $H = dB - \frac{3\alpha'}{\sqrt{2}} \left(\omega^{3YM} - \omega^{3L} \right)$
- In Minkowski vacuum (with W = 0), F-terms:

$$F_{C_i} = rac{\partial W}{\partial C_i} = -rac{3lpha'}{\sqrt{2}} \int_X \Omega \wedge rac{\partial \omega^{3 YM}}{\partial C_i}$$

• Dimensional Reduction Anzatz: $A_{\mu} = A^{(0)}_{\mu} + \delta A_{\mu} + \bar{\omega}^{i}_{\mu} \delta C_{i} + \omega^{i}_{\mu} \delta \bar{C}_{i}$

$$F_{C_i} = \int_X \epsilon^{\bar{a}\bar{c}\bar{b}} \epsilon^{abc} \Omega^{(0)}_{abc} 2\bar{\omega}^{\times i}_{\bar{c}} \operatorname{tr}(T_{\times}T_{y}) \left(\delta \mathfrak{z}' v^{c}_{I[\bar{a}} F^{(0)y}_{|c|\bar{b}]} + 2D^{(0)}_{[\bar{a}} \delta A^{y}_{\bar{b}]} \right)$$

- Computationally same as Atiyah obstructions.
- Superpotential observations in lit. since 80's. Hard part is engineering calculable examples.
- Idea: Build bundles where "ingredients" crucially depend on complex structure...

F-term Example

- What about TSD e.g.s w/ holomorphy obstructions? (i.e. F-term lifting)?
- Consider the SU(2) bundle

		x	i			г ^j		۸a		ΡĮ
1	1	0	0	0	0	-2	2	$^{-1}$	$^{-1}$	0
0	0	1	1	1	1	-4	0	2	2	-4

- Does not define a stable bundle for general choices of complex structure: Missing a map $F_1^a \in H^0(X, \mathcal{O}(-2, 4) = 0$ generically. However, line bundle cohomology can jump...
- Shown in (arXiv:1107.5076) that on a 53-dim. sublocus of CS moduli space, $h^0(X, \mathcal{O}(-2, 4) = 1. \Rightarrow dim(\mathcal{M}_1) = dim(\mathcal{M}_0) 33.$
- TSD matches $dim(\mathcal{M}_1)$ exactly, but for the remainder of this talk, I want to take step back and look at geometry of (X, V)...

- Question: In case of TSD or other heterotic "redundancies", can we produce Donaldson's (projective) total spaces of the bundle and can compare their properties?
- Hope is to extract "essential" features of manifold/bundle pair.
- Questions at both the level of the metric (i.e. differential geometry) and topology/algebraic description (i.e. algebraic geometry)

Inspired by GLSMs, let's begin by considering the case of X a CY complete intersection manifold in a toric variety and V defined via a monad

$$0 \to \mathcal{O}_{\mathcal{M}}^{\oplus_{\mathcal{V}}} \xrightarrow{\otimes E_{i}^{a}} \oplus_{a=1}^{\delta} \mathcal{O}_{\mathcal{M}}(N_{a}) \xrightarrow{\otimes F_{a}^{l}} \oplus_{l=1}^{\gamma} \mathcal{O}_{\mathcal{M}}(M_{l}) \to 0$$

with $V = \frac{\ker(F_a^{\prime})}{im(E_i^{a})}$

• Result:

Let V be a stable, holomorphic SU(n) bundle.

V is defined via a monad over a toric CICY 3-fold iff its projectivized total space, $\mathcal{Z} = \mathbb{P}(V \to X)$ is an $\dim_{\mathbb{C}} = 3 + (n-1)$ (Kahler) toric complete intersection manifold.

Illustrative example:

- Given $X = \mathbb{P}^5[2,4]$ with $0 \to V \to \mathcal{O}(1)^{\oplus 7} \to \mathcal{O}(3) \oplus \mathcal{O}(2)^{\oplus 2} \to 0$
- $dim(\mathcal{M}_0) = h^{1,1}(X) + h^{2,1}(X) + h^1(End_0(V)) = 1 + 89 + 159 = 249$
- ${\mathcal Z}$ defined by

$$\mathcal{Z} = \left[egin{array}{c|c} \mathbb{P}^6 & 0 & 0 & 1 & 1 & 1 \ \mathbb{P}^5 & 2 & 4 & 2 & 1 & 1 \end{array}
ight]$$

 $\mathcal Z$ is a Kähler 6-fold with $h^{1,1}=2$ and $h^1(T\mathcal Z)=248.$

• Neat feature: The ambient space is determined by the ambient spaces of bundle/monad. If X is a CICY in \mathcal{A} and if $0 \to V \to B \to C \to 0$ is a monad, can define fiber space of V as CI in $\mathcal{E} = \mathbb{P}(\pi : B \to X)$ (total ambient space not in general a product).

• Total space $\Leftrightarrow (X, V)$?

$$\begin{array}{rcl} 0 & \rightarrow & \mathcal{O}^{\oplus r} \rightarrow \bigoplus_{i=1}^{i} \mathcal{O}(\mathsf{D}_i) \rightarrow \mathcal{TA} \rightarrow 0 \\ & 0 \rightarrow \mathcal{TZ} \rightarrow \mathcal{TA} \rightarrow \mathcal{N} \rightarrow 0 \end{array}$$

with \mathbf{D}_i determined by GLSM charges and the $\mathcal{N} = \bigoplus_{j=1} \mathcal{O}(\mathbf{P}_j)$, with \mathbf{P}_j is the multi-degree of the j-th hypersurface.

• How to construct X, V? If $0 \to A \xrightarrow{E} B \xrightarrow{F} C \to 0$ is a three-term monad, the "display" is useful:

where $K = \ker(F)$ and $Q = \operatorname{coker}(E)$.

To reconstruct (X, V) from \mathcal{Z} , consider the display and restrict to fiber and base. E.g.

We have "reconstructed" V from the \mathbb{P}^{n-1} fiber of \mathcal{Z} .

Useful for systematically classifying heterotic geometries?

It is natural to ask where the degrees of freedom of the heterotic theory are realized in \mathcal{Z} ?

- $h^1(\mathcal{Z}, T\mathcal{Z}) = h^1(X, \mathcal{Q})$ (i.e. the complex moduli of a heterotic theory)
- $h^{1,1}(\mathcal{Z}) = 1 + h^{1,1}(X)$ (one more than the number of Kahler moduli. Dilaton?)
- The tautological line bundle $\xi_{\mathbb{Z}}$ is uniquely defined by the properties that $\xi_{\mathbb{Z}}|_F = \mathcal{O}_F(1)$ and $\pi_*(\xi_{\mathbb{Z}}) = V$ (moreover $c_1(\mathbb{Z}) = n\xi_{\mathbb{Z}}$ for an Su(n) bundle). For cases of interest,

 $h^*(Z,\xi_{\mathcal{Z}}) = h^*(X,V)$ i.e. counts charged matter

• Chern classes: $ch(\mathcal{Z}) = function(ch_2(X) = ch_2(V), ch_3(V))$, etc

Summary

- (0,2) Target Space Duality leads to a wealth of intriguing geometric correspondences. Worthy of further study...
- We have begun a systematic rewriting of heterotic geometry in terms of the total space of the bundle
- In the case of SU(n) monad bundles and toric CICY 3-folds \Rightarrow explicit realization of Kähler (n + 2)-fold as a toric CICY.
- In the simplest cases of (0, 2) "dualities", Hodge numbers, Chern classes and cohomology of the tautological line bundle are identical ⇒ Sigma model automorphism?
- In other dualities, can in principle track geometric transitions in total space $(1 \leftrightarrow 1?)$, properties of 4D EFT preserved.

- Utility for new (0,2) dualities? String Pheno? Systematic constructions?
- Further study underway...