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PERTURBATION THEORY

- Ground st

ate energies In gquantum mechanical problems

» Beta-func

lons In quantum field theories

» Genus expansion of string theory

- Late-time

- Large-N expansions In gauge theories

behaviour of strongly correlated systems

BUT: expansions are often divergent, asymptotic!



ASYMPTOTIC EXPANSIONS
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| Perturbation theory often leads to divergent asymptotic
expansions
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Surprisingly, this asymptotic behaviour carries crucial information
about exponentially small, non-perturbative (NP) phenomena
governing the global analytic properties of physical observables

u | Global Analytic properties of observables
Goal: . |
beyond perturbation theory

Focus on late-time behaviour of the
energy density of strongly coupled plasma |

— = e — —_— = — ——— =

In this talk:




OUTLINE

|. A primer on resurgent transseries (?)

2. Late-time behaviour for strongly coupled plasma

» Microscopic description and dual gravity solution

» Asymptotic analysis and QNMs

3. A simpler case: MU

» [ransseries, asym

ler-Israel-Stuart hydrodynamics

btotics and summation prescriptions

» [he attractor solution from asymptotic late-times?

4. Further applications



. i
A PRIMER ON RESURGENT
TRANSSERIES (?)

[IA,Basar,Schiappa’ | 8]



PERTURBATION THEORY IN &M

\ y * Series is asymptotic: For large enough n
I : B, ~ i

s = s = — S - L = -

| Why asymptotic! Existence of instantons

Corrections CORE W il Z E™ g™ Suppressed!
- i n=0




BEYO ND PERTURBATION THEORY

Higher instanton

. —_—
corrections |

[Vanstein'64;Bender,Wu'/ 3;Bogomolny,Zinn-justin'80]



/ | . .
k-Instanton contribution, |

each I1s asymptotic |
(kA" )

c// =
|

. Formal expansion In transmonomials

o

e the small parameter @

* non-perturbative term e~ A/9 ,
» 0 encodes boundary/initial condrtions |

N e G ST Caa I e
L e (g.0) requires all instantons to be well defined




RESURGENCE

Coefficients between different sectors
are related through large-order relations

~

Using Resurgence

e —— = o =

- Look at perturbative coefficients for
| large enough N

| | large order relations
| encode NP

| information in the

perturbative series




BOREL TRANSFORMS

[

<

~ Remove the factorial growth to get a convergent seri
& inverse Laplace transform to each term

= = R i




BOREL TRANSFORM

k L et s= simpl n‘you g }

= ==

(/ - Original Series:

@)

B, (9) o i

n=0

single poleat s = A

The position of the pole Is 5=
controlled by instanton action




BOREL TRANSFORM

* Non-perturbative phenomena: singularities in Borel plane

*Singulartties usually will be branch cuts

*Singular directions: Stokes lines

e Structure of singularities can be very complex
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[IA,Russo,Schiappa’ | 4]



BOREL RESUMMATION

Original Series: Borel Transform:
. | |

n=0 I !
— /'////,/

s — plane
A
" How to associate a function to | 2
l‘ Wb et ' y i S =
\__the original asymptotic series? _

Via Borel resummation: Laplace transform

SEg,S,(g):/ dsBg(s)e /9
0



BOREL RESUMMATION

A

| A
L Beto) S

e 7{ ds
s=A

A
A=z

/t Ambigurty in choice ]
a i

contour |

e 3/9 ~ g=A/9 NO”'PGI”.JEUI”Ibatlve
\ Ambiguity




BOREL RESUMMATION

* Borel resummation straightforward in the directions without singularities

* Re-summation along Stokes directions: ambigurties

A

e

- Ambigurties In the transseries

St
<>:: < all sectors have ambiguities
S

R * Use resurgence to fix o st

(S+ = S8-) Ey5.(9,00) = 0

S—I-Eg.s.(gao-) S0 S—EQ-S-(Q’U@ \_

Stokes constant (Imaginary)

e — S =

[/ The full transseries Is unambiguous, and we can |
‘ construct an analytic solution in any direction

e — EE——————




STOKES PHENOMENA

Transseries  E,,. ~ Zake_kA/g E®)(g) E® ~ N " B g
k=0

Across Stokes line

Tm(A/g) = 0 Non-pert contributions
very suppressed

S+FEgs.(9,0) =S-Egs.(9,0+5)

At anti-Stokes line

Re(A/g) =0 All terms of same order! Different physics



IN SUMMARY

» Obtain NP completion in the form of transseries

O

g . B Zo_l{ie—k’A/g E(k’)( ) E(k) i Z Err(Lk) gn
k=0 =

» Re-sum all asymptotic sectors Sy E® (g)

» Determine o from external data (boundary/initial conditions)

» [his can be done for any value of g and encodes:

Analytic data (poles, zeros, branch cuts)

Phase transitions (Stokes phenomena)



3.
LATE-TIME ASYMPTOTIC FOR
STRONGLY COUPLEDP PLASMA
IN N =4 sSYM



RELATIVISTIC HYDRODYNAMICS

't provides a reliable description of strongly coupled systems

* real life: strongly coupled quark-gluon plasma in particle accelerators;

* Jo determine the kinetic parameters of hydrodynamic equations (e.g.
shear viscoslity): study the associated microscopic theory

The associated microscopic theory can be a QFT, such as strongly coupled
N = 4 SuperYang-Mills (SYM)

- — — i ———-—————————— e ———

N — oo gaugelgravity duality: determine hydrodynamic |
| parameters, time dependent processes of the SYM plasma |
from dual geometry

[Policastro et al '01-'04; Nastase ‘03]



STRONGLY COUPLED SYSTEMS

Kinematic regime: expanding plasma in the so-called central rapidity
region, where one assumes longitudinal boost invariance (Bjorken flow)

[Bjorken '83]

In hydrodynamic theories the energy-momentum tensor Is given by

Tl :@u“u” + P(é)(n“” +(u %) +@

Energy density
Pressure, in 4d conformal Shear stress tensor:
theories given by: dissipative effects
2l =23 flow velocity

Symmetries: conformal invariance, transversely homogeneous,
invariance under longitudinal L orentz boosts




STRONGLY COUPLED SYSTEMS

Kinematic regime: expanding plasma in the so-called central rapidity
region, where one assumes longitudinal boost invariance (Bjorken flow)
[Bjorken '83]

In hydrodynamic theories the energy-momentum tensor Is given by

T = Eulu” + P(E) (" + uHu”) + TIHY

— T e — — L = S —

/ Strongly coupled SYM boost invariant plasma:
all physics encoded in £(7).

Obtaining this function is in general too difficult:
\\ perform a large proper time expansion 7> 1.

e —— e




LATE TIME BEHAVIOUR

Starting from highly non-equilibrium initial conditions, the microscopic
theory will reveal the transition to hydrodynamic behaviour at late times

Conformal theories: late-time behaviour of energy density highly constrained

A i €L
Sl = 1+ E el
e ( - <A¢>2k/3>

» A is a dimensionful parameter encoding initial non-eq. conditions
* Leading behaviour predicted by boost-invariant perfect fluid

* Subleading terms: dissipative hydrodynamic effects

= —

/, =
!

. use dual geometry to analyse the
~ expansion of boost invariant SYM plasma |

. ©
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SYM PLASMA FROM ADS/CFT

Equilibrium states of the

microscopic theory (CFT) PRI SOlLEJ\[/l\(/DiESen 98]
flat space at boundary: .ty Lk b

planar horizons

Perturbative non-equilibrium E s inearised perturbations of
phenomena black brane solution

exp. decaying black branes’
quasi-normal modes

NSRS Gliee amicdof s =

[Janik, Peschanski "O5][Janik '05]



SYM PLASMA FROM ADS/CFT

Dual geometry given by boost invariant 5D metric

1 1
ds® = — (dz” — e~ dr? + T2 dy? +e%dzl) = = (Guvdatda” + dz°)

Solve Einstein equations with negative cosmological constant
(asymptotic behaviour is AdS)

| ° metric components depend on z, T
Ryy — 5Gu B — 66y =0 - boundary condition at z = 0:
G,LLV = 77“” -+ 249,525) -+ .-

/» ey =
/

|
t Energy density 2

[Hare et al '00][Skenderis '02][Fefferman,Graham '85]



SYM PLASMA FROM ADS/CFT

Metric ansatz: multi-parameter transseries with exponential decaying sectors
and perturbative expansions in proper time

The most general solution for the energy density of the SYM plasma is:

E (u =T
exponentially decaying perturbative late-time
geliplcctONIMs " wy = —glAk expansions

* Infinite number of QNMs A= (A1, A1, Az, Ay, o)

» Parameters encoding non-hydro Initial conditions 0 = (04, 04,045,000 L el

All expansions in the energy density are asymptotic!

[HellerJanik, Witaszcyk' | 5; |A et al’ | 8]



ASYMPTOTIC ENERGY PENSITY

Hydrodynamic expansion: —225“)) =l e i

Singularities in Borel plane:

15
(JJl; 2601, 3601 : o, sector &
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Wi e
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ASYMPTOTIC ENERGY PENSITY

+0o0
& (u =, 0') — Z c”e "B, (u), P,w =u " Z 5,(?) T
k=0

neNg°®

10—39 L

» NP description of the late time behaviour
of the SYM plasma |
» Asymptotic analysis predicted coupled = e
QMN solutions In gravity g

10—44 [

10—54 B

10—59;

» Agreement between gravity calculations |
1078

and resurgence large-order predictions 0 TR R
1A et al'18]

» (Can we recover the non-equilibrium behaviour of early times?

» Dependence of the transseries parameters on initial condrtions?

= = S — — - e ——

/,

- Study a simpler relativistic hydrodynamic system

\ , g R




=.
A SIMPLER EXAMPLE:
MULLER-ISRAEL-STUART
HYDPRODYNAMICS



MIS CAUSAL HYDRODYNAMICS

Solve evolution equations of the Energy momentum tensor
Vi =10

- Assume boost invariant flow, conformal invariance

* Hydrodynamic gradient expansion: approximate shear stress tensor
by corrections to ideal fluid

[

| Muller-lsrael-Stuart (MIS) equations

L

e = — = — ==

o 60 2
9 9 3

2Crnf ' +4Cuf? + (Z—

* Non-linear ODE describing the energy density
- Crm, O are phenomenological parameters



MIS CAUSAL HYDRODYNAMICS

* We are interested In the late time regime z > 1
* [t has a single, purely decaying non-hydrodynamic mode

Write the general solution as a transseries, sectors asymptotic.
Study resurgent properties

Poles of BP,5¢[®p]

+00
BCa— ) o D, (2)
n=0

0.4
+ o0 0.2
ek (n) ,—k =
k=0 -
-0.2
A == 3 5 =1 — C')? -0.4
207‘1_[ CTH
5 10 15 20

Re(s)

[Heller,Spalinski’| 5; Basar,Dunne'l 5; |A,Spalinski’ | 5]



SOLUTION AT EARLY TIMES

Attractor solution: Stable solution, converging to a finite

value at early times

Generic solution: divergent at early times, but will decay rapidly

towards the attractor solution

Pl
Faw(z) = 5+ .

+ O(z2)

g Uaiilge 0o |1

0.8

Calculate attractor solution: -
Taylor expansion

0.7
0.6

0.5

1.0

0.0

0.5

1.0

1.5 2.0 2.5 3.0
\W

[Heller,Spalinski * | 5]



SOLUTION AT EARLY TIMES

—+ o0 —+ o0
o) = Z e Al ) O Z a,gn)z_k
n=0 k=0

Can we recover the attractor solution
from the transseries expansion?

Need to fix the value of o =0 +io;

* Ambigurty cancelation fixes its imaginary part

- Comparison with attractor fixes its real part

[Heller,Spalinski * | 5]



AMEBIGUTY CANCELATION

—+ o0 —+ o0
ERCNo) — Z o e ) W (=2 Z a,({n)z_k
n=0 k=0

* positive real axis Is a Stokes line

 FiIx o =opg + 1o such that summation below axis Is

S :
S (z,aR + 5) with Stokes const: S = —0.0365371

AnDIgUE CAREs e = Gr =

N | T



ANALYTIC TRANSSERIES SUM

The order of transmonomials in the transseries can be rearranged:
=EY S O®
n
o — Z S Z (o730 ew itun
k=0 n=0
—Be—Az

B nEY e me v/ variable: 7 =0z

We want to sum the transseries in a new regime: 2z ' <7 < 1

The sum over powers of 7 can be done exactly!
\\ 7 g 7 Eavd o 7 PO AR

— S — —_—

OO + 00

Flany) — Z i) Fi(r) = Z T ag,

k=0 n=0

[Costin et alOl-13; IASchiappa,Vonk to appear]



ANALYTIC TRANSSERIES SUM

+00 —+ 00

Flor)=Y 2 Flr)  FRm) =3

k=0 n=0

Recursive calculation:

Lambert-W function
Wi(z)eW® =g

Polynomials



CONNECTION TO ATTRACTOR

—+ o0

Flaml— e o
k=0

Choose 2z large enough to be In above regime, but small
enough to compare to attractor solution Fa:w(z) at early times

o Choose z offthereal axis 2z = zr + 125

» Analytically continue attractor solution to complex plane

SO|V€ .F(Z,T) — FAtt(z) tO Qb‘taiﬂ T(Z) — ZTT i

.

/
| .
k Transseries parameter:

= —




CONNECTION TO ATTRACTOR

We obtain:

o~ —0.245 — 0.01281

Imaginary part approximates the
value from ambigurty cancelation

S
Im(o)-—
(0) >
0.25

0.1

~0.1

~0.2"

reme—lo T0) —|— 7'12_1 —|— 7'22_2 —|— 7'3,2_3 —|— 7'42_

4



EARLY AND LATE TIMES

Ve can use the value obtained and perform Borel resummation:

SV =5 0y(2) Foe “°S_0,(2) Foler2SEa ) .

with o ~ —0.245 — 0.0128i

S Imj S Re N

0.00035 190
0.00030 0.95
0.00025 0.90 g
0.00020 - ;

: 0.85 :
0.00015 ;
0.00010 o o83
0.00005 fhite .

: i ! v | | ] : | | | | | | | | | ! ! Z i ‘ : ‘ ‘ : ‘ ‘ | ‘ . . | ¥ ) h | . ) z

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8



4.
FURTHER APPLICATIONS



2D GRAVITY AND PAINLEVE |

* Free energy of 2d gravity obeys Painleve | ODE
) — =iz u?(z) — =u"(2) = 2
* Phase transitions: study Lee-Yang zeros of partition function
A=

* Method: analytic prediction of poles of Painleveé transcendents
from analytic transseries summation and Stokes phenomena

Structure of poles of
tritrongquee, tronquee
and general solutions

[IA,Schiappa,Vonk]



PHASE DIAGRAM: MATRIX MODELS

* Study the partrtion function of quartic matrix model

Z (N, gs) /dM exp (-iTrV(M)) T = 12

* Large N expansion, p

1

s 2 24

nase diagram dependent on 't Hooft modull

e Phase transitions: stuc

y Lee-Yang zeros of partition function

* Analytic transseries summation: determine position of zeros

___________
- ~
- S
g S
/'

’
\\\ ’/
~ -
-~ -
-

----- phase diagram and
position of zeros in
anti-Stokes region

[IA,Schiappa, Vonk]



COLLECTION OF OPEN RUESTIONS

Transseries In gauge theories and matrix models

* asymptotics with multi-parameters

* Interpretation of non-perturbative contributions
Determining Stokes constants

* play an essential role in ambiguity cancelation
* problem specific
* very few known analytically

Analytic properties of asymptotic observables

*phase transitions
*role of Initial conditions
*boundary asymptotic matching






