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Introduction

I will describe new developments regarding the correspondence between four-dimensional
N = 2 superconformal field theories and vertex operator algebras/chiral algebras.

It has been apparent since the appearance of this correspondence in 2013 that the VOAs
arising from four dimensions are highly structured and, in an appropriate sense, special.

At String Math 2017 in Hamburg, I described work with Rastelli demonstrating one
characterization of this specialness: the VOAs coming from four-dimensional SCFTs are
quasi-Lisse, with associated variety matching the Higgs branch, so symplectic.

In a superficial sense, this gives a geometric characterization of the associated VOA – it
is a chiral quantization of the Higgs branch.

However, this is not a particularly constructive notion. It is just a fancy term to describe
precisely the situation as outlined.

Christopher Beem (Oxford) String Math 2019, Uppsala Universitet 1 July 2019 2 / 36



Introduction

I will describe new developments regarding the correspondence between four-dimensional
N = 2 superconformal field theories and vertex operator algebras/chiral algebras.

It has been apparent since the appearance of this correspondence in 2013 that the VOAs
arising from four dimensions are highly structured and, in an appropriate sense, special.

At String Math 2017 in Hamburg, I described work with Rastelli demonstrating one
characterization of this specialness: the VOAs coming from four-dimensional SCFTs are
quasi-Lisse, with associated variety matching the Higgs branch, so symplectic.

In a superficial sense, this gives a geometric characterization of the associated VOA – it
is a chiral quantization of the Higgs branch.

However, this is not a particularly constructive notion. It is just a fancy term to describe
precisely the situation as outlined.

Christopher Beem (Oxford) String Math 2019, Uppsala Universitet 1 July 2019 2 / 36



Introduction

I will describe new developments regarding the correspondence between four-dimensional
N = 2 superconformal field theories and vertex operator algebras/chiral algebras.

It has been apparent since the appearance of this correspondence in 2013 that the VOAs
arising from four dimensions are highly structured and, in an appropriate sense, special.

At String Math 2017 in Hamburg, I described work with Rastelli demonstrating one
characterization of this specialness: the VOAs coming from four-dimensional SCFTs are
quasi-Lisse, with associated variety matching the Higgs branch, so symplectic.

In a superficial sense, this gives a geometric characterization of the associated VOA – it
is a chiral quantization of the Higgs branch.

However, this is not a particularly constructive notion. It is just a fancy term to describe
precisely the situation as outlined.

Christopher Beem (Oxford) String Math 2019, Uppsala Universitet 1 July 2019 2 / 36



Introduction

I will describe new developments regarding the correspondence between four-dimensional
N = 2 superconformal field theories and vertex operator algebras/chiral algebras.

It has been apparent since the appearance of this correspondence in 2013 that the VOAs
arising from four dimensions are highly structured and, in an appropriate sense, special.

At String Math 2017 in Hamburg, I described work with Rastelli demonstrating one
characterization of this specialness: the VOAs coming from four-dimensional SCFTs are
quasi-Lisse, with associated variety matching the Higgs branch, so symplectic.

In a superficial sense, this gives a geometric characterization of the associated VOA – it
is a chiral quantization of the Higgs branch.

However, this is not a particularly constructive notion. It is just a fancy term to describe
precisely the situation as outlined.

Christopher Beem (Oxford) String Math 2019, Uppsala Universitet 1 July 2019 2 / 36



Introduction

I will describe new developments regarding the correspondence between four-dimensional
N = 2 superconformal field theories and vertex operator algebras/chiral algebras.

It has been apparent since the appearance of this correspondence in 2013 that the VOAs
arising from four dimensions are highly structured and, in an appropriate sense, special.

At String Math 2017 in Hamburg, I described work with Rastelli demonstrating one
characterization of this specialness: the VOAs coming from four-dimensional SCFTs are
quasi-Lisse, with associated variety matching the Higgs branch, so symplectic.

In a superficial sense, this gives a geometric characterization of the associated VOA – it
is a chiral quantization of the Higgs branch.

However, this is not a particularly constructive notion. It is just a fancy term to describe
precisely the situation as outlined.

Christopher Beem (Oxford) String Math 2019, Uppsala Universitet 1 July 2019 2 / 36



Question:
Is there a stronger sense in which these VOAs are encoded

in the physics of their respective Higgs branches?



Introduction

In today’s talk I will describe efforts to answer this question in the affirmative (following
on some results previewed by Leonardo Rastelli at String Math last year).

In particular, we have the following standing conjecture, with many supporting examples.

Free Field Conjecture [CB, Meneghelli, Rastelli]
The VOA associated to an N = 2 SCFT admits a “free field realization” in terms of:
◦ A lattice VOA VΠd,d for a lattice Π of signature (d, d) with d = dimHMH .
◦ A C2-cofinite VOA V[TIR], where TIR is the infrared SCFT supported at a generic

point on the Higgs branch (a point of maximal Higgsing).
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Introduction

In today’s talk I will describe efforts to answer this question in the affirmative (following
on some results previewed by Leonardo Rastelli at String Math last year).

In particular, we have the following standing conjecture, with many supporting examples.

Free Field Conjecture (improved version) [CB, Meneghelli, Rastelli]
The VOA associated to an N = 2 SCFT admits a “free field realization” in terms of:
◦ A lattice VOA VΠd,d for a lattice Π of signature (d, d) with d = dimHMH with

lattice momenta restricted to an isotropic sublattice of Πd,d.
◦ A C2-cofinite VOA V[TIR], where TIR is the infrared SCFT supported at a generic

point on the Higgs branch (a point of maximal Higgsing).

These are “small”, or (probably) “minimal” free field realizations, using fewer ingredients
than one might expect possible.

The particular form of the free field construction encodes transparently the structure of
the Higgs branch as a holomorphic-symplectic variety.
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Plan for the talk

◦ Review of VOA/SCFT correspondence

◦ Rudiments of free field realizations and a key example

◦ Rank-one exceptional series: minimal nilpotent orbits

◦ Rank-two exceptional series: two-instanton moduli spaces

◦ Comments and open questions
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VOA/SCFT correspondence
[CB, Madalena Lemos, Pedro Liendo, Peelaers, Rastelli, Balt van Rees]

Long ago in 2013 we gave a construction of a vertex operator algebra given an N = 2
superconformal field theory in four dimensions.

4d N = 2 SCFT T V−−−−−−−−−−−−−−−−−→ VOA V[T ]

This is a concrete construction that takes place within the OPE algebra of the parent
SCFT by way of a carefully chosen cohomological reduction.

Consequently, a huge amount of detailed algebraic information about the full SCFT is
encoded in the associated VOA, but it is often a challenge to extract it!
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VOA/SCFT correspondence
[CB, Madalena Lemos, Pedro Liendo, Peelaers, Rastelli, Balt van Rees]

Start with N = 2 SCFTs qua OPE algebras,

O1(x1)O2(x2) ∼
∑
k

c k
12 Ok(x2)

|x1 − x2|∆1+∆2−∆k
, x1,2 ∈ R4 .

Local operators {Oi(x)} organized in representations of su(2, 2|2) superconformal
algebra, with bosonic subalgebra

su(2, 2)× su(2)R × u(1)r

along with sixteen fermionic symmetries,

◦ Poincaré supercharges: QIα and Q̃Iα̇ with I = 1, 2, α = ±, α̇ = ±.
◦ Special conformal supercharges: SαI and S̃α̇I .

We label operators by their charges (E, j1, j2, R, r) under the Cartan subalgebra.
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VOA/SCFT correspondence
[CB, Madalena Lemos, Pedro Liendo, Peelaers, Rastelli, Balt van Rees]

The full OPE algebra is deeply complicated object and is the subject of, e.g., numerical
conformal bootstrap analysis.

More immediately tractable algebras can be extracted by thinking of the OPE algebra as
a dg-OPE algebra with respect to a nilpotent element of su(2, 2|2) and passing to the
cohomology.

Commutative algebras in cohomology

◦ Coulomb chiral ring: {O(x)|EO = rO}.
◦ Higgs chiral ring: {O(x)|EO = 2RO}.
◦ Hall-Littlewood chiral ring: {O(x)|EO = 2RO + rO}.
◦ Schur algebra: {O(x)|EO = 2RO + (j1 + j2)O , rO = (j1 − j2)O}.

The last of these actually has the structure of a commutative (Poisson) vertex algebra,
and arises in the holomorphic-topological twist of N = 2 SCFTs. [Kapustin 2006]
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VOA/SCFT correspondence
[CB, Madalena Lemos, Pedro Liendo, Peelaers, Rastelli, Balt van Rees]

With conformal invariance, acquire additional fermionic symmetries and can define new
differentials.

Associated vertex operator algebra: V[T ]

• Arises upon taking cohomology of mixed supercharge,

Q = Q1
− + S̃−̇1 .

• Non-commutative vertex operator algebra.
• Quantization of Schur algebra; underlying vector space V is Schur operators.

For my purposes, a VOA structure on V amounts to an (associative) meromorphic OPE
algebra in two dimensions.

O1(z)O2(w) ∼
∑
k

c k
12 Ok(w)

(z − w)h1+h2−hk
.
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VOA review and terminology

Each operator can be expanded in a Laurent series,

O(z) =
∞∑

n=−∞

znO−h−n , On ∈ End(V) ,

The normally ordered product of two operators is defined at the origin according to

NO(a, b)(0) ≡ (ab)(0) =
∮

dz

2πiz a(z)b(0) := a−hab−hb |Ω〉 .

NO(·, ·) is generally non-commutative and non-associative.

For future convenience, introduce secondary bracket which captures simple pole in OPE,

{a, b}(w) =
∮

dz

2πia(z)b(w) .
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Structural Properties of the Associated VOA

Recall general properties that follow directly from the construction:

• 1
2Z+-valued conformal grading (uncorrelated with Grassmann parity).

• Vir−12c4d affine enhancement of sl(2)z (note c4d > 0) .
• V

− k4d
2

(g) affine enhancement of gF flavour symmetry (note k4d > 0) .

• RHL generators (in particular RH generators) =⇒ strong V-generators .
• Schur index =⇒ VOA character,

ISch(q) := qc4d/2STrH(S3)q
E−R = STrVqL0−c/24 =: χV(q)

• Null states are removed (i.e., always in simple quotient) .
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2

(g) affine enhancement of gF flavour symmetry (note k4d > 0) .

• RHL generators (in particular RH generators) =⇒ strong V-generators .
• Schur index =⇒ VOA character,

ISch(q) := qc4d/2STrH(S3)q
E−R = STrVqL0−c/24 =: χV(q)
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Structural Properties of the Associated VOA

Recall general properties that follow directly from the construction:

• V is triply graded as a vector space by R, r, and h = E −R = R+ j1 + j2:

V =
⊕
h,R,r

Vh,R,r .

• OPE violates R conservation but is compatible with the induced filtration

Fh,R,r =
⊕
k>0

Vh,R−k,r .

• Associated graded is our friend the Schur algebra

grFV ∼= Schur Algebra

• By further restricting to subspaces with h = R or h = R+ r, we recover RH and
RHL (as Poisson algebras).

Christopher Beem (Oxford) String Math 2019, Uppsala Universitet 1 July 2019 13 / 36



Structural Properties of the Associated VOA

Recall general properties that follow directly from the construction:

• V is triply graded as a vector space by R, r, and h = E −R = R+ j1 + j2:

V =
⊕
h,R,r

Vh,R,r .

• OPE violates R conservation but is compatible with the induced filtration

Fh,R,r =
⊕
k>0

Vh,R−k,r .

• Associated graded is our friend the Schur algebra

grFV ∼= Schur Algebra

• By further restricting to subspaces with h = R or h = R+ r, we recover RH and
RHL (as Poisson algebras).

Christopher Beem (Oxford) String Math 2019, Uppsala Universitet 1 July 2019 13 / 36



Structural Properties of the Associated VOA

Recall general properties that follow directly from the construction:

• V is triply graded as a vector space by R, r, and h = E −R = R+ j1 + j2:

V =
⊕
h,R,r

Vh,R,r .

• OPE violates R conservation but is compatible with the induced filtration

Fh,R,r =
⊕
k>0

Vh,R−k,r .

• Associated graded is our friend the Schur algebra

grFV ∼= Schur Algebra

• By further restricting to subspaces with h = R or h = R+ r, we recover RH and
RHL (as Poisson algebras).

Christopher Beem (Oxford) String Math 2019, Uppsala Universitet 1 July 2019 13 / 36



Structural Properties of the Associated VOA

Recall general properties that follow directly from the construction:

• V is triply graded as a vector space by R, r, and h = E −R = R+ j1 + j2:

V =
⊕
h,R,r

Vh,R,r .

• OPE violates R conservation but is compatible with the induced filtration

Fh,R,r =
⊕
k>0

Vh,R−k,r .

• Associated graded is our friend the Schur algebra

grFV ∼= Schur Algebra

• By further restricting to subspaces with h = R or h = R+ r, we recover RH and
RHL (as Poisson algebras).

Christopher Beem (Oxford) String Math 2019, Uppsala Universitet 1 July 2019 13 / 36



Higgs branches from VOAs
[CB, Rastelli (2017)]

This construction of RH requires that we understand V[T ] as an R-filtered VOA to
begin with, whereas in practice we rarely have access to the filtration.

We have conjectured an alternative method to extract RH canonically from the VOA.

C2(V) := span {a−ha−1b , a , b ∈ V}
RV := (V/C2(V) , NO( , ) , {·, ·} ) .

Here we are essentially “removing derivatives” from the VOA. The resulting RV is a
commutative Poisson algebra by construction: Zhu’s commutative algebra

Higgs Branch Conjecture [CB, Rastelli]

MH ≡ Spec(RH) = Spec(RV)red ≡ XV “Associated Variety”

VOAs whose associated varieties are symplectic dubbed quasi-Lisse by T. Arakawa and
K. Kawasetsu. Strong constraint (e.g., modularity of characters of ordinary modules).
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VOAs from Higgs branches



Free field realizations
[CB, Meneghelli, Rastelli (2019)]

It is often useful to realize a (potentially complicated) VOA as a vertex operator
sub-algebra of a simpler VOA, such as a lattice VOA or some collection of (β, γ) or free
fermion VOAs. Recall a couple of famous examples.

Virasoro from chiral boson (Feigin-Fuchs)
Given a chiral boson VOA

ϕ(z)ϕ(w) ∼ log(z − w)
Realize Virasoro algebra of general central charge c = 1− 12α2 via background charge
method,

T (z) = 1
2(ϕ′)2 + αϕ′′ .
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Free field realizations
[CB, Meneghelli, Rastelli (2019)]

It is often useful to realize a (potentially complicated) VOA as a vertex operator
sub-algebra of a simpler VOA, such as a lattice VOA or some collection of (β, γ) or free
fermion VOAs. Recall a couple of famous examples.

Affine Kac-Moody VOA from free bosons (Wakimoto; Feigin-Frenkel)
Given three bosons [two realized as (1, 0), (βγ) system]:

β(z)γ(w) ∼
1

z − w
, ϕ(z)ϕ(w) ∼ log(z − w)

Affine sl(2) currents at level k given as follows,

J
+(z) = β(z) ,

J
3(z) = −2(βγ)−

√
2(k + 2)ϕ′ ,

J
−(z) = −(γγβ)−

√
2(k + 2)(γϕ′) + kγ

′
.

Remark: For any simple g, this is generalized to a construction involving rg chiral bosons
and 1

2 (dg − rg) (β, γ) pairs.

Christopher Beem (Oxford) String Math 2019, Uppsala Universitet 1 July 2019 17 / 36



Free field realizations
[CB, Meneghelli, Rastelli (2019)]

It is often useful to realize a (potentially complicated) VOA as a vertex operator
sub-algebra of a simpler VOA, such as a lattice VOA or some collection of (β, γ) or free
fermion VOAs. Recall a couple of famous examples.

Affine Kac-Moody VOA from free bosons (Wakimoto; Feigin-Frenkel)
Given three bosons [two realized as (1, 0), (βγ) system]:

β(z)γ(w) ∼
1

z − w
, ϕ(z)ϕ(w) ∼ log(z − w)

Affine sl(2) currents at level k given as follows,

J
+(z) = β(z) ,

J
3(z) = −2(βγ)−

√
2(k + 2)ϕ′ ,

J
−(z) = −(γγβ)−

√
2(k + 2)(γϕ′) + kγ

′
.

Remark: For any simple g, this is generalized to a construction involving rg chiral bosons
and 1

2 (dg − rg) (β, γ) pairs.

Christopher Beem (Oxford) String Math 2019, Uppsala Universitet 1 July 2019 17 / 36



Free field realizations
[CB, Meneghelli, Rastelli (2019)]

In these examples, the universal version of the relevant VOA is generally being
constructed.

The central charge/level is tunable; when tuned to a value where the VOA in question
should acquire singular vectors in its vacuum Verma module, the quotient needs to be
taken by hand.

Remark: An exception is the Wakimoto/Feigin-Frenkel realization at the critical level
k = −h∨, where the chiral bosons decouple and there is a realization in terms of just
(β, γ) pairs.

The latter is the type of construction we find in our general story!

[Critical-level AKM VOAs arise via the SCFT/VOA correspondence when considering the
OPE algebra supported on real co-dimension two defects in six-dimensional (2, 0)
theories.]
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Free field realizations
[CB, Meneghelli, Rastelli (2019)]

Paradigm case for our constructions appeared 15 years ago in work by Drazen Adamovic.

Consider (A1, A3) Argyres-Douglas theory. This has for its associated VOA a fractional
level (admissible) AKM VOA

V[AD(A1,A3)] = V−4/3(sl(2))

The associated variety for this VOA is the nilpotent cone of sl(2),

XV−4/3(sl(2)) =MH [AD(A1,A3)] = Omin(sl(2)) ∼= C2/Z2 .

Singular vector at level h = 3 of the form (JAT Sug + . . .) generates all nulls.
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Free field realizations
[CB, Meneghelli, Rastelli (2019)]

Adamovic constructed the simple AKM VOA at this level in terms of a lattice VOA
VΠ1,1:

J
+ = e

δ+ϕ
, J

3 = kϕ
′
, J

− = −
(
k2

4
(δ′)2 −

k(k + 1)
2

δ
′′
)
e
−δ−ϕ

.

We will interpret this construction geometrically as follows.

• C2/Z2 is the algebraic variety {XY + 1
4Z

2 = 0} ⊂ C3.
• Take principal open subset (UX ⊂ XV) = {p ∈ XV | X(p) 6= 0}.
• Here we can solve for Y = − 1

4Z
2X−1, so UX ∼= CZ × C×X .

• The Poisson bracket lets us identify UX ∼= T ∗C×.

The free field realization is an affinization of this realization of C[C2/Z2] in C[T ∗C×].
Here we are making replacements

X ←→ eδ+ϕ , Z ←→ k

2 (ϕ′ − δ′) + . . . , Y ←→ −k
2

4

(
ϕ′ − δ′

2

)2

e−δ−ϕ + . . .
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J
+ = e

δ+ϕ
, J

3 = kϕ
′
, J
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(
k2

4
(δ′)2 −

k(k + 1)
2

δ
′′
)
e
−δ−ϕ

.

We will interpret this construction geometrically as follows.
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4Z
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4Z
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A free field R-filtration
[CB, Meneghelli, Rastelli (2019)]

As is familiar from Wakimoto, when affinizing there may/will be “quantum corrections”
required in order for the OPEs close correctly, hence the ellipses.

We can formalize the notion of corrections by using (surprise) a filtration.

An isotropic subalgebra ISOVΠd,d ⊂ VΠd,d admits a natural (good) filtration. We will
identify with the physical R-filtration coming from four dimensions, and use it to
introduce a formal ~ to organize “quantum” corrections.

Define a monomial basis for ISO(VΠd,d) using free field normal ordering. Assign
R̃-grading according to

◦ R̃[en(ϕ+δ)] = n ,
◦ R̃[∂n(ϕ+ δ)] = 0 ,
◦ R̃[∂n(ϕ− δ)] = 1 ,

Take the associated filtration of this grading as the R-filtration, quantum corrections are
subleading in filtration.

Christopher Beem (Oxford) String Math 2019, Uppsala Universitet 1 July 2019 21 / 36



A free field R-filtration
[CB, Meneghelli, Rastelli (2019)]

As is familiar from Wakimoto, when affinizing there may/will be “quantum corrections”
required in order for the OPEs close correctly, hence the ellipses.

We can formalize the notion of corrections by using (surprise) a filtration.

An isotropic subalgebra ISOVΠd,d ⊂ VΠd,d admits a natural (good) filtration. We will
identify with the physical R-filtration coming from four dimensions, and use it to
introduce a formal ~ to organize “quantum” corrections.

Define a monomial basis for ISO(VΠd,d) using free field normal ordering. Assign
R̃-grading according to

◦ R̃[en(ϕ+δ)] = n ,
◦ R̃[∂n(ϕ+ δ)] = 0 ,
◦ R̃[∂n(ϕ− δ)] = 1 ,

Take the associated filtration of this grading as the R-filtration, quantum corrections are
subleading in filtration.

Christopher Beem (Oxford) String Math 2019, Uppsala Universitet 1 July 2019 21 / 36



A free field R-filtration
[CB, Meneghelli, Rastelli (2019)]

As is familiar from Wakimoto, when affinizing there may/will be “quantum corrections”
required in order for the OPEs close correctly, hence the ellipses.

We can formalize the notion of corrections by using (surprise) a filtration.

An isotropic subalgebra ISOVΠd,d ⊂ VΠd,d admits a natural (good) filtration. We will
identify with the physical R-filtration coming from four dimensions, and use it to
introduce a formal ~ to organize “quantum” corrections.

Define a monomial basis for ISO(VΠd,d) using free field normal ordering. Assign
R̃-grading according to

◦ R̃[en(ϕ+δ)] = n ,
◦ R̃[∂n(ϕ+ δ)] = 0 ,
◦ R̃[∂n(ϕ− δ)] = 1 ,

Take the associated filtration of this grading as the R-filtration, quantum corrections are
subleading in filtration.

Christopher Beem (Oxford) String Math 2019, Uppsala Universitet 1 July 2019 21 / 36



A free field R-filtration
[CB, Meneghelli, Rastelli (2019)]

As is familiar from Wakimoto, when affinizing there may/will be “quantum corrections”
required in order for the OPEs close correctly, hence the ellipses.

We can formalize the notion of corrections by using (surprise) a filtration.

An isotropic subalgebra ISOVΠd,d ⊂ VΠd,d admits a natural (good) filtration. We will
identify with the physical R-filtration coming from four dimensions, and use it to
introduce a formal ~ to organize “quantum” corrections.

Define a monomial basis for ISO(VΠd,d) using free field normal ordering. Assign
R̃-grading according to

◦ R̃[en(ϕ+δ)] = n ,
◦ R̃[∂n(ϕ+ δ)] = 0 ,
◦ R̃[∂n(ϕ− δ)] = 1 ,

Take the associated filtration of this grading as the R-filtration, quantum corrections are
subleading in filtration.

Christopher Beem (Oxford) String Math 2019, Uppsala Universitet 1 July 2019 21 / 36



A free field R-filtration
[CB, Meneghelli, Rastelli (2019)]

As is familiar from Wakimoto, when affinizing there may/will be “quantum corrections”
required in order for the OPEs close correctly, hence the ellipses.

We can formalize the notion of corrections by using (surprise) a filtration.

An isotropic subalgebra ISOVΠd,d ⊂ VΠd,d admits a natural (good) filtration. We will
identify with the physical R-filtration coming from four dimensions, and use it to
introduce a formal ~ to organize “quantum” corrections.

Define a monomial basis for ISO(VΠd,d) using free field normal ordering. Assign
R̃-grading according to

◦ R̃[en(ϕ+δ)] = n ,
◦ R̃[∂n(ϕ+ δ)] = 0 ,
◦ R̃[∂n(ϕ− δ)] = 1 ,

Take the associated filtration of this grading as the R-filtration, quantum corrections are
subleading in filtration.

Christopher Beem (Oxford) String Math 2019, Uppsala Universitet 1 July 2019 21 / 36



Rank one Deligne SCFTs
[CB, Meneghelli, Rastelli (2019)]

Using this geometric intuition, we found a direct generalization of Adamovic’s
constructions to the full Deligne-Cvitanović exceptional series of SCFTs/VOAs.

These are the rank-one F -theory SCFTs, i.e., the theory supported on a D3 brane
probing a singular fiber of an elliptic K3 surface in F -theory.

Their associated VOAs are V−h∨−6
6

(g) for g ∈ {a0, a1, a2, d4, e6, e7, e8} .

Remarks

◦ a0 is a formal entry in this list, it corresponds to the Vir(2,5) VOA.
◦ g2 and f4 also seem to belong to this list from a VOA perspective, though they

have no known four-dimensional ancestors.

The associated variety/Higgs branch is Omin(g) (we formally set Omin(a0) = {pt.}).
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Rank one Deligne SCFTs
[CB, Meneghelli, Rastelli (2019)]

Nontrivially, the minimal nilpotent orbits admit a description in a principal open subset
that generalizes the a1 case.

Write g =
(
sl(2)θ ⊕ g\

)
⊕ (2,R), take eθ 6= 0.

Theis gives an open patch that looks like a flat R bundle over T ∗C×eθ with a nontrivial
Z2 holonomy around the origin of C×.

Free field construction uses 2h∨ − 2 free bosons (most expressed as symplectic bosons)

◦ An isotropic subalgebra of the Lorentzian lattice VOA VΠ1,1:
∞⊕

n=−∞

(V∂ϕ ⊗ V∂δ) e
n
2 (δ+ϕ) .

◦ 2h∨ − 4 symplectic bosons {ξA} associated to the symplectic vector space R.
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Rank one Deligne SCFTs
[CB, Meneghelli, Rastelli (2019)]

Can construct C[Omin(g)] as Poisson subalgebra of functions on this cotangent bundle as
before and affinize.

eθ(z) = eδ+ϕ , eA(z) = ξA e
δ+ϕ

2 , J\α(z) := TABα ξAξB (g\ ⊂ sp(R)) .

hθ(z) = k

2∂ϕ , fθ(z) =
(
S\ −

(
( k2 ∂δ)

2 − k(k+1)
2 ∂2δ

))(
e−(δ+ϕ)

)
,

S\ =


(k + 2)T \ , T \ = −TSug[g\] + ∂ξΩ−1ξ , k 6= −2 ,

− 1
2

(
(J\1, J

\
1)A1 + (J\2, J

\
2)A1 + (J\3, J

\
3)A1

)
, k = −2, i.e. g = d4 ,

Note half-integrality in lattice momentum correlated with number of symplectic boson
insertions due to monodromy.

Remark: These constructions are super economical! 58 bosons for e8, compared to 248
(or 240 at critical level) from W-FF.
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Rank two Deligne SCFTs
[CB, Meneghelli, Peelaers, Rastelli (to appear)]

A beautiful further illustration of this philosophy in a highly nontrivial context comes
from looking at the rank-two generalizations of the Deligne series SCFTs.

This time (for g /∈ {g2, f4}) these are the theories arising from a pair of D3 branes
probing the same class of F-theory singularities as in the previous examples.

We will make use a small number of facts about these theories:

◦ Their Higgs branches are the (centered) two-g-instanton moduli spaces on C2.
Correspondingly, their Higgs chiral rings are generated by moment maps for
su(2)× g global symmetry, along with R = 3/2 generators ω in the (2,Adj).

◦ They are completely Higgsable, so no residual degrees of freedom.
◦ Central charges and flavour symmetry levels computed by Aharony and Tachikawa.
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Rank two Deligne SCFTs
[CB, Meneghelli, Peelaers, Rastelli (to appear)]

g h∨ kg2d k
su(2)
2d c2d h̃min a4d ri

g(h∨) h∨ −h∨−6
3

−h∨−9
6 −11− 5h∨ − 9+9h∨

24
23+8h∨

24
h∨+6

6 , h
∨+6

3

a0
6
5 − 17

10 −17 − 1
5

163
120

6
5 ,

12
5

a1 2 − 8
3 − 11

6 −21 − 1
3

13
8

4
3 ,

8
3

a2 3 −3 −2 −26 − 1
2

47
24

3
2 , 3

g2 4 − 10
3 − 13

6 −31 − 2
3

55
24

5
3 ,

10
3

d4 6 −4 − 5
2 −41 −1 71

24 2, 4

f4 9 −5 −3 −20 − 3
2

95
24

5
2 , 5

e6 12 −6 − 7
2 −71 −2 119

24 3, 6

e7 18 −8 − 9
2 −101 −3 167

24 4, 8

e8 30 −12 − 13
2 −161 −5 263

24 6, 12

Remark: Central charges satisfy c2d = cgSug + c
su(2)
Sug except for g = su(3), where both

current algebras are at critical level!
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Rank two Deligne SCFTs
[CB, Meneghelli, Peelaers, Rastelli (to appear)]

Centred two-g-instanton moduli spaces for g ∈ {a0, a1, a2, d4, e6, e7, e8}.

µg ω
∣∣

( 1
2 ,1)

= 0 , 4µ2
su(2)

∣∣
(0,1)

= µ
2
g

∣∣
(0,1)

,

µg ω
∣∣

( 1
2 ,Y
∗
2)

= 0 , µg ω
∣∣

( 1
2 ,Adj)

= 4µsu(2) ω
∣∣

( 1
2 ,Adj)

,

µ
3
g

∣∣
(0,X2)

= b2 ω
2
∣∣

(0,X2)
, ω

2
∣∣

(1,Y∗2)
= −µsu(2) µ

2
g

∣∣
(1,Y∗2)

,

µ
3
g

∣∣
(0,Adj)

= b1 ω
2
∣∣

(0,Adj)
, ω

2
∣∣

(1,1)
= −µsu(2) µ

2
g

∣∣
(1,1)

,

µ
3
g

∣∣
(0,Y∗3)

= 0 ,

{Xk,Yk,Y∗k} uniform notations for representations in the Deligne series [Cohen, de
Man]

What a mess!
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Rank two Deligne SCFTs
[CB, Meneghelli, Peelaers, Rastelli (to appear)]

From the point of view of the F-theory construction, it is clear that this Higgs branch
has the structure of two copies of the one-instanton moduli space, fibred over C2/Z2.

This will be the most instructive way to think about them.

Indeed, we adopt an intermediate point of view: try to build a free field realization in
terms of the effective field theory on the locus where the residual theory is two copies of
the rank-one SCFT!
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Rank two Deligne SCFTs
[CB, Meneghelli, Peelaers, Rastelli (to appear)]

So we will have a construction in terms of

◦ Two copies of the rank-one Deligne VOA V−h∨−6
6

(g):

J A1,2(z) , A = 1, . . . , dim g .

◦ Isotropic subalgebra of the Lorentzian lattice VOA VΠ1,1:
∞⊕

n=−∞

(V∂ϕ ⊗ V∂δ) e
n
2 (δ+ϕ) .

Can further express rank-one VOAs using the previous free field realization, since there
all nulls vanish identically.

dimH M̃g,2 = 2h∨ − 1 = 2(h∨ − 1) + 1
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Rank two Deligne SCFTs
[CB, Meneghelli, Peelaers, Rastelli (to appear)]

Free field realization:

JA(z) =
(
JA1 + JA2

)
,

j++(z) = e
δ(z)+ϕ(z)

,

j+−(z) =
ksu(2)

2 ∂ϕ(z) ,

j−−(z) =
(
−S\ +

(
(
ksu(2)

2 ∂δ)2 −
ksu(2)(ksu(2)+1)

2 ∂
2
δ

))(
e
−(δ+ϕ)

)
.

S
\ = (ksu(2) + 2)

(
T

Sug
1 + T

Sug
2 − T Sug

12

)
,

WA
+ (z) =

(
JA1 − J

A
2

)
e

1
2 (δ(z)+ϕ(z))

,

WA
−(z) =

(
− UA(z)− (JA1 − J

A
2 )

ksu(2)
2 ∂δ(z)

)(
e
− 1

2 (δ(z)+ϕ(z))
)
,

UA =
(
−

4(2+ksu(2))

kg+h∨

)
1
2 if

A
BC J

B
1 J

C
2 + k

g

(
ksu(2)+2

kg+h∨

)
∂(JA1 − J

A
2 ) ,

Form of generators completely fixed by filtration-compatible Ansatz and basic closure
requirements.
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Rank two Deligne SCFTs
[CB, Meneghelli, Peelaers, Rastelli (to appear)]

We find a unique expression for the non-trivial W ×W OPE such that algebra closes on
Higgs branch generators (plus stress tensor in case of g = su(3))

WA
α (z) WB

β (w) ∼
c1 εαβ κ

AB

(z − w)3 +
ic2 εαβ f

AB
C J

C(w) + c3 κ
AB jαβ(w)

(z − w)2

+
1

z − w

(
ic4 εαβ f

AB
C ∂JC(w) + c5 κ

AB
∂jαβ(w)

+ c6 κ
AB

εαβ (jj)(w) + ic7 f
AB

C (jαβJC)(w)

+ εαβ
(
c8 1

(AB)(w) + c9 Y(AB)
2 (w) + c10 Y∗(AB)

2 (w)
))

.

where coefficients take fixed form in terms of h∨:

c1 = 1 , c2 = −
3

6 + h∨
, c3 =

6
9 + h∨

, c4 = −
3

2(6 + h∨)
, c5 =

3
9 + h∨

,

c6 = −
9

(−3 + h∨)(9 + h∨)
, c7 = −

18
(6 + h∨)(9 + h∨)

, c8 = −
9h∨

2(−3 + h∨)(6 + h∨)
,

c9 = −
9

(6 + h∨)(9 + h∨)
, c10 =

3
6 + h∨

.
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Rank two Deligne SCFTs
[CB, Meneghelli, Peelaers, Rastelli (to appear)]

These VOAs are now equipped with filtrations inherited from those of their free field
spaces, which allows us to see some interesting structure that is obscure at the level of
the unfiltered VOA.

Consider Higgs branch relation µg ω
∣∣
( 1

2 ,1)
= 0 . In our free field realization, we have

κABJ AWB
+ ∼ (T Sug

1 + T Sug
2 )e

1
2 (δ+ϕ) .

Not null, but lives in the R 6 3
2 component of the R-filtration due to the rank-one

filtration. In associated graded we recover the Higgs branch relation!

These sorts of delicate rearrangements in the associated graded are a hallmark of the
physical R-filtration.
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Comments on irreducible pieces

I have focused on cases where the Higgs branch theory is entirely geometric.

An important generalization comes from cases where the low-energy physics of the Higgs
phase is not completely encoded in the geometry of the Higgs branch, but there are
residual interacting degrees of freedom, e.g.,

◦ N = 4 SYM with gauge algebra g supports rg free vector multiplets.
◦ Class S theories of type g for genus g > 1 support g × rg free vector multiplets.
◦ (A1, D2n+1) Argyres-Douglas supports (A1, A2n−2) theory.
◦ Rank-n H0 theory supports (rank-1 H0)⊗n.

In these cases, the free field realization is equipped with an extra factor of the C2
co-finite VOA associated to those residual degrees of freedom.
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Conclusions
Applications and Extensions

• For theories with sufficiently nice Higgs branches, our approach gives a powerful
alternative to “bootstrapping” the associated VOA.
Essentially all linear quiver SCFTs can be understood by a recursive application of some of
the techniques mentioned here.
Non-Lagrangian class S theories such as T4 seem to be accessible as well. New viewpoint
on so-called Moore-Tachikawa symplectic varieties.

• Examples I discussed all had “fibration over C2/Z2” in the geometry. Generalizes to
other canonical singularities.
Should also generalize to more general transverse slices to nilpotent orbits.
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Conclusions
Open Questions

• A more sophisticated way to identify the right subalgebras of our free-field spaces?
In some examples, there is a screening charge characterization.
Four-dimensional physics interpretation of screening charges?

• What are the allowed irreducible building blocks/C2-cofinite VOAs?
Conjecture that these should be highly constrained by four-dimensional unitarity.
More generally, unitarity constrains allowed Higgs branches.

• What role is four-dimensionality playing in this story?
Some evidence of a similar for associated varieties/free field realizations beyond cases
arising from (unitary) four dimensional physics.
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Tack så mycket!


