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No go theorems ) no global evolution for Khovanov(-Rozansky)

The answer: set of local evolutions on separate domains
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Deformation of the eigenvalues
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Example of 3d phase diagram. Genus 2 pretzel knots.
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Same color=same evolution formula.

Thanks to Sh. Shakirov for improving this picture!
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Motivation

Vector bundle cohomology is crucial information
in many string theory applications.

One common and important class is line bundles,
e.g. in realistic model-building.

Currently computation is difficult, doesn’t provide insight,
(algorithmic, computer-based, time consuming).

Deeper understanding would be very useful,
e.g. for classification, bottom-up model-building, ...
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Hints from ‘experiment’

Cohomologies described by piecewise polynomial formulae:
[Constantin, Lukas ‘18], [Larfors, Schneider ‘19], [CB, Constantin, Deen, Lukas ‘19]

Two-folds
(del Pezzos, toric, ...)

Three-folds
(CICYs, toric hyp.)
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Hints from ‘experiment’

Cohomologies described by piecewise polynomial formulae:
[Constantin, Lukas ‘18], [Larfors, Schneider ‘19], [CB, Constantin, Deen, Lukas ‘19]

Two-folds
(del Pezzos, toric, ...)

Three-folds
(CICYs, toric hyp.)

Key observation:

Polynomials described by map into a ‘fundamental’ region.



Results

Understood a key aspect:

Maps for h0 drop ‘rigid’ pieces of divisor associated to bundle,
mapping to nef cone (Zariski decomposition).

Index expressions for cohomology on surfaces:

For (many) surfaces this is the only effect.
⇒ Index expressions for h0 for e.g. all del Pezzos:

h0 (dPn,OdPn(D)) = χ

(
D +

∑
{i|C2

i =−1}

#iCi

)
,

Covers many three-fold cases:

Can lift surface cohomology to h0,1,2,3 on elliptic CY3.
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Some applications

• Bottom-up model-building
Some CY3 now already covered, e.g. elliptic

• Jumping loci
Systematic understanding, all bundles at once

• Reverse-engineering rigid divisors
Rigid divisors seen in region edges, find by e.g. ML
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M-theory and 7d SYM

M-theory on G2-manifolds gives a N = 1 theory in 4d (with matter,
coupled to SUGRA)

For interesting 4d physics one needs G2-spaces with singularities in
codimension 4 and 7. Compact examples not known.

Instead consider a (noncompact) local limit [Pantev, Wijnholt]

C2/�ADE ,�! X7 ! M3 , M3 associative.

M-theory reduced on the C2/�ADE fibre
+

partially twisted 7d SYM on R1,3 ⇥M3 with ADE gauge group

7d SYM contains a Higgs field � 2 ⌦1(ad(gADE)). BPS equations give
the Hitchin system on M3

FW � i [�,�] = 0 , DW� = 0 , D
†
W� = 0 .



Computing the Chiral Spectrum

Simplified problem ([�,�] = 0, ⇡1(M3) = 0) reduces to

� = df , with �f = 0 ) no non-constant solutions.

Introduce a source term ⇢ along � ⇢ M3 and consider

�f = ⇢, with
Z

M3

⇢ = 0.

M3

T( )

M3=M3\T( )

Excise tubular neighbourhood
of � = �+ [ �� ⇢ M3
(configuration of charges)
to get M3 with boundary ⌃+ [ ⌃�.

Impose boundary conditions

Dirichlet on ⌃�, Neumann on ⌃+ .

Chiral spectrum computed by the relative cohomology of a pair (M3,⌃�)

chiral : H1(M3,⌃�), conj. chiral : H2(M3,⌃�) .



Localised Matter

Matter is localised at � = df = 0 i.e. critical loci of f and the chiral
fermions are in the kernel of

�f = DfD†
f +D†

f Df , Df = d + df ^

[Witten]: This is Hamiltonian for an SQM and it computes the Morse
cohomology.

Motivated by TCS: What if f has 1d critical loci i.e. is Morse-Bott?

SQM model ) Morse-Bott cohomology ) recovers H
⇤(M3,⌃�)

One gains more information from Morse(-Bott) picture:
• gradient curves lift to associatives in the total space of the ALE

fibration ) M2-branes
• Yukawa interactions (and higher couplings) can be expressed in

terms of gradient flow trees.



Chiral Spectrum of Twisted Connected Sum

Twisted connected sum G2-manifolds are built from two building blocks

K3 ,�! X± ! S
1 ⇥ C±.

) the Higgs field �± = df± is S
1-invariant ) critical loci are (only)

circles.

Using Morse-Bott theory we can show that in this case

chiral index ⌘ 0 .

Hence, TCS compactifications do not give rise to chiral spectra.

However, in the local model, one can deform charge configuration to give
chiral spectrum.
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Quantum Hall Effect: U(1) gauge theory on a torus
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Duality of Quantum Group (Frenkel and Hernandez 2011)
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Langlands Duality of Quantum Group

(Frenkel and Hernandez 2011)

(String Theoretical Relation: Hatsuda, Katsura, Tachikawa 2016)
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Home Messages
Symmetry Protected Topological (SPT) Matter 
 would generally respect the Langlands Program

Schnyder et al. (2009)

Kapustin and Witten (2005),  
Gukov and Witten (2006),  
Hausel (2002), 
Frenkel and Gaiotto (2018)

Langlands  
ProgramString Condensed Matter
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SCFT/VOA correspondence via �-deformation
based on arXiv:1904.00927

Saebyeok Jeong
Gong Show, String Math 2019

C.N. Yang Institute for Theoretical Physics, Stony Brook University

*See also [Oh-Yagi ’19], [Pan-Peelaers ’19], [Dedushenko-Fluder ’19].



VOA from (Q+S)-cohomology

Four-dimensional N = 2 superconformal algebra admits a fermionic generator
of the form © “Q + S”, for which [Beem-Lemos-Liendo-Peelaers-Rastelli-van Rees ’13]

2 = 0, [ , L+1,0,≠1] = 0

{ , ÂQ1≠̇} = L̄≠1 + R
≠, { , S

≠
2 } = L̄+1 ≠ R

+, { , †
} = 2(L̄0 ≠ R).

In particular, R-twisted anti-holomorphic conformal transformations on a plane
are -exact.

Hence, from Schur operators located at the origin,

{ , O(0)] = 0, O(0) ”= { , O
Õ(0)],

we can build the twisted-translations of local operators

O(z, z̄) = ezL≠1+z̄ L̂≠1 O(0)e≠zL≠1≠z̄ L̂≠1 ,

whose -cohomology forms a vertex operator algebra.
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VOA for Lagrangian N = 2 superconformal theories

Free hypermultiplet gives symplectic bosons (also known as —“ system).

Free vectormultiplet gives bc ghosts.

For interacting theories, the prescription is first to take the naive tensor
product and then to pass to the cohomology with respect to the
nilpotent BRST operator.

An alternative approach from �-deformation?

2



�-deformation of holomorphic-topological theory

For the N = 2 superconformal theory on C ◊ C‹, we can make the
holomorphic-topological twist [Kapustin ’06] between U(1)C ◊ U(1)C‹ and
U(1)R ◊ U(1)r µ SU(2)R ◊ U(1)r , with the scalar supercharge Q = Q

1

≠ + ÂQ1

≠̇,

{Q, Q
2

+} = ≠P+≠̇, {Q, ÂQ2

+̇
} = P≠+̇

{Q, Q
2

≠} = ≠{Q, ÂQ2

≠̇} = ≠P≠≠̇.

Hence as a Q-cohomological field theory, the N = 2 superconformal theory is
topological along C‹ and holomorphic along C.

The action for the vector multiplet is Q-exact:

Svec = Q (· · · ) .

The action for the hypermultiplet splits into Q-closed part and Q-exact part:

Shyp =
⁄

C

d2z O
(2)

W + Q (· · · ) , W =
⁄

C‹
Qz(ˆz̄ ≠ iAz̄)Q̃

3
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�-deformation of holomorphic-topological theory

As in [Nekrasov ’18], [Costello-Yagi ’18] , we can define a deformed supersymmetry
generator QÁ such that

Q2

Á = Á(DC‹ ÿV + ÿV DC‹ ) = ÁLV + Gauge[ÁÿV A],

where V is the isometry of C‹. The �-deformed action can be obtained by
replacing Q by QÁ.

The QÁ-variations of fermions give

F = 0, ÿV F ≠ iDC‹ ÿV „ = 0, D = 0,

Fz̄ + ÁÿV Dz̄ = 0, DC‹ qz + ÁÿV hz = 0, DC‹ q̃ + ÁÿV h = 0.

By integrating out the auxiliary fields, fixing a gauge, and introducing polar
coordinates on C‹,

ˆtAz̄ = ≠
1
2Á̄

qz̄ q̃†, ˆtqz = ≠
i

2Á̄
Dz q̃†, ˆt q̃ = i

2Á̄
Dzqz̄ ,

This is the gradient flow generated by Re
!

1

Á

s
C

qzDz̄ q̃
"

= Re
!
W
Á

"
.
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ˆtAz̄ = ≠
1
2Á̄

qz̄ q̃†, ˆtqz = ≠
i

2Á̄
Dz q̃†, ˆt q̃ = i

2Á̄
Dzqz̄ ,

This is the gradient flow generated by Re
!

1

Á

s
C

qzDz̄ q̃
"

= Re
!
W
Á

"
. 4



Localization and VOA

Due to the convergence of the action, Az̄ , qz , and q̃ should end on the critical
points {dW = 0} as t æ Œ. The remaining two-dimensional path integral is
defined on the gradient flows emanating from those critical points, i.e.,
Lefschetz thimbles.

The action for this two-dimensional path integral is obtained as

S = 1
Á

⁄

C

d2z qzDz̄ q̃.

By further fixing the remnant gauge by Az̄ = 0, we arrive at

1
Á

⁄

C

A
Tr b ¯̂c +

ÿ

i

qi ¯̂q̃i

B
.

This is the action for the two-dimensional bc-—“ system. The algebra of local
operators of this theory recovers the VOA that we wanted.

5
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Justin Kaidi Modular Graph Functions in Physics

Genus one 4-graviton scattering

• Consider 4 graviton scattering at one loop,

A(4)
1 = 2⇡R4

Z

F

d2⌧

⌧2
2

B4(sij; ⌧) sij = �
↵0

4
(ki + kj)

2

–Partial amplitudes B4(s, t, u; ⌧) are integrals over vertex operator insertions,

B4(sij) =
4Y

i=1

Z

⌃

d2zi

⌧2
exp

8
<

:
X

1i<j4

sijG(zi � zj|⌧)

9
=

;

– We work with the Arakelov Greens function,

@z̄@zG(z|⌧) = �⇡�(2)(z) +
⇡

⌧2

Z

⌃
dz G(z|⌧) = 0

– Admits a Kronecker-Eisenstein series representation,

G(z|⌧) =
0X

p2⇤

⌧2

⇡|p|2
e2⇡i(n↵�m�) p = m + n⌧

z = ↵ + �⌧

1



Justin Kaidi Modular Graph Functions in Physics

Diagrammatic Expansion

• We now try to calculate the partial amplitudes in ↵0-expansion,

B4(sij) =
1X

w=0

1

w!

4Y

i=1

Z

⌃

d2zi

⌧2

0

@
X

1i<j4

sijG(zi � zj|⌧)

1

A
w

• Graphical notation is useful [‘15 D’Hoker, Green, Vanhove],

• Given any graph �, we have C�(⌧) =

✓Qm
k=1

R
⌃

d2zk
⌧2

◆Q
1i<jm G(zi � zj|⌧)⌫ij ,

C�(⌧) =
0X

p1,...,pw2⇤

 
wY

r=1

⌧2

⇡|pr|2

!
mY

i=1

�

 
wX

r=1

�irpr

!
“MGF”

– Example 1: Ew ⌘ C
⇥ ⇤

=
P0

p2⇤

⇣
⌧2

⇡|p|2

⌘w

– Example 2: C1,1,1 ⌘ C
⇥ ⇤

=
P0

p1,p2,p32⇤
(⌧2/⇡)

3

|p1|2|p2|2|p3|2
�(p1 + p2 + p2)

2



Justin Kaidi Modular Graph Functions in Physics

Relations between MGFs

• Modular graph functions obey a rich set of identities.

– Algebraic identities, e.g.

C1,1,1 = E3 + ⇣(3)

7C2,2,2,1 = 21E4E3 + 14C3,2,2 + 28C421 � 31E7

– All such algebraic identities up to weight 7 obtained via sieve algorithm

in [‘16 JK, D’Hoker].

– Special class of identities: “holomorphic subgraph reduction” [’18 JK, Gerken]

– Di↵erential identities, e.g. [‘16 JK, D’Hoker]

(� � w(w � 1))Ew = 0 (� � 2)C2,1,1 = 9E4 + E2
2

– Fourier and Poincaré series obtained in [‘18 D’Hoker, Duke; ‘19 JK, D’Hoker].

This enables integration of MGFs to get full string amplitudes!

3
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The End (for now)

Thank you!

4
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Super J-holomorphic curves

Enno Keßler

joint with A. Sheshmani and S.-T. Yau

Center of Mathematical Sciences and Applications, Harvard University

DFG Research Fellow

Gong Show StringMath 2019

1st July 2019



Super Riemann Surfaces

Definition

A super Riemann surface is a complex supermanifold M of

dimension 1|1 together with a holomorphic distribution D ⇢ TM

such that the commutator of vector fields induces an isomorphism

D ⌦D ! TM�D.

Theorem (EK
1
, see also Howe 1979)

Let i : |M| ! M be a map from a 2|0-dimensional manifold into a
2|2-dimensional supermanifold which restricts to the identity of
topological manifolds. A super Riemann surface structure is
equivalent to a Riemannian metric g , a spinor bundle S and a
gravitino � 2 � (T_|M|⌦ S) on |M| (up to Weyl- and super Weyl
transformations).

1Keßler (2019). Supergeometry, Super Riemann Surfaces and the
Superconformal Action Functional. Springer LNM 2230, to appear



Super J-holomorphic curves

Definition

Let I be the almost complex structure on M and N a symplectic

manifold with compatible almost complex structure J. For

� : M ! N, define the operator DJ� 2 � (D_ ⌦ �⇤
TN)0,1 by

DJ� =
1

2
(d�+ J � d� � I)|D .

We will call maps � such that DJ� = 0 super J-holomorphic

curves.

• If the almost complex structure J is integrable the map � is

holomorphic.

• If � is a super J-holomorphic curve it is a critical point of the

superconformal action on M, or “spinning string”.



Space of maps M ! N

For i : |M| ! M and � : M ! N define the component fields

' = � � i : |M| ! N,

 = i
⇤
d�|D 2 �

�
S
_ ⌦ '⇤

TN
�
,

F = i
⇤�D� 2 � ('⇤

TN) .

• In good coordinates (xa, ⌘↵) on M:

�(x , ⌘) = '(x) + ⌘µ µ (x) + ⌘3⌘4
F (x)

• There is a supermanifold structure on Hom(M,N) given by

the exponential map and charts around ('0, 0,F0) given by

� ('⇤
0TN)� �

�
S
_ ⌦ '⇤

0TN
�
� � ('⇤

0TN) .



Moduli space of super J-holomorphic curves

� : M ! N is a super J-holomorphic curve if and only if in

component fields

0 =  + I⌦J , 0 = F 2 � ('⇤
TN) ,

0 = @J'+ hQ�, i+ 1

4
Trg_

S
h ,'⇤rJi � I ,

0 = /D
1,0
 � (1 + I⌦J)

✓
2 h_Q�, d'i � 1

3
SR

N( )

◆
.

• The moduli space of super J-holomorphic curves should obtain

a subsupermanifold structure from Hom(M,N).
• The expected real dimension of the moduli space is

ind @J | ind /D
1,0

= 2n(1 � p) + 2 hc1(TN),Ai |2(n � 1)(1 � p) + 2 hc1(TN),Ai .

where p is the genus of M, 2n is the real dimension of N and

A = [im'] 2 H2(N).
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Fourier-Mukai Transforms of Slope Semistable Sheaves
on Weierstrass Elliptic Surfaces

Wanmin Liu (Uppsala Univ.)
Jason Lo (California State Univ. Northridge)

Thanks to IBS Center for Geometry and Physics in Pohang, South Korea
Liu was supported by IBS-R003-D1
Preprint is available at wanminliu.github.io



MOTIVATION 

smooth proj var 
bounded derived category of coherent sheaves

stability condition                  invariant 

(Mumford slope, Gieseker, PT, Bridgeland etc)

relation/ symmetry/ modularity 

invariant

X 1a

DMX)

Io E Aut ( Dbl XD

E

J - hurry on -

/ Io Io

'

I ?
V ly

O' = Eco ) runs p :



QUESTION

elliptic fiberation
with a section 

over a smooth base

relative Fourier-Mukai transform

slope stability condition 

What is a notion of stability condition
for slope stability condition under

Key Premise: we do NOT fix Chern characters
(Otherwise, lots of work by Bruzzo, Maciocia, Yoshioka and many...)

singular fibers: nodal or cusp

elliptic

ample nef
fixed positive number

×
o E .

- e

E- oars, * 4,90

x
- B B

Io E Aut ( DMX)) Faso # =§oIoCb=idpbc×,

Ma ( Moti -

YIIi.I.cohkdw-o-tmfi-y.at

Ioa ] ?



Limit Bridgeland Stability Condition   

along CURVE                         

Bridgeland stab condition

pl

w -_ Uff -1mF ) -1 Vf

Uk uv -

- Atm - ed

Cohlx )

¥ ( Tw
. Fw )

l limit along *
B - Bw = LEED

,
Tw )as v → is

Ol - ( Z ? Bl ) := fim ow
Ow -_ ( Zai - §e"khH

,
Bw ,

✓ → to

along A

-



Limit Bridgeland Stability Condition   

along CURVE                         

Bridgeland stab condition

Thm (A)Thm (B)

pl

DBCX) DBCX ) w=UfQtmfHVf

EASE U4uv=dtm - e
conan ¥44

" " "

µ Cohlx )*
.

¥ ( Tw .tw )

limit along *
e- Bw= LEED .TW )as v → is

Ol - ( Z ? Bl ) := tim yw
Ow -_ ( Zai '=-§e"khH

,
Bw ,

✓ → to

along A

-



Theorem (L-Lo)

stability                                              stability

semistability                                        semistability

small modification

torsion sheaf

(A)

(B)

Weierstrass elliptic surface

Thm (A)Thm (B)

" " " " * " " "

¥
.

×

Ioa ]
( Ma -

.
Cohan ) I ¥

,
Bl )

E - µw- stable F ICE ) Zl - stable

t t
It

(Ma -

.
Cohan) C- (d- ,

BG

ICF '

) - Mo - Ss .

I 0→ F' → F- → F' ' → o in Bl

Eff ")
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Deriving on-shell open string field amplitudes

without using the Feynman rule

Toru Masuda

CEICO, Institute of Physics, Czech Academy of Sciences, Prague

String-Math 2019, Uppsala, Sweden, 1st July, 2019.



(First Slide)

I would like to thank the organizers for giving me this opportunity
to introduce my recent research, and also thank you all for coming to
this session. It is a great honor to be able to speak to you today.

My talk subject is related to open string field theory and how to
derive on-shell scattering amplitudes in this framework, but it’s not a
very familiar topic of the recent String-Math Conferences. So, let me
first explain ”what is the open string field theory” briefly.

Advertisement
this talk is based on a collaborative work with H. Matsunaga,
arXiv:1907.***** (coming soon).



(Second Slide)

Open string field theory (OSFT) is a field-theoretic formulation of
open string theory. Today, we consider Witten’s bosonic OSFT whose
action has a close resemblance to the 3-dim. Chern-Simons theory:

S[Φ] = −1

2

∫
Φ ∗QBΦ− 1

3

∫
Φ ∗ Φ ∗ Φ

QB : H → H, ∗ : H×H → H,
∫
: H → R.

Witten’s open SFT 3dim. Chern-Simons theory
∗ ∧
QB d

ghost number rank of the differential form

Algebraic structure looks almost the same; but objects with negative
ghost number make OSFT dynamical (and interesting in a sense).



(Third Slide)

As usual (local) quantum field theory, we can compute the scattering
amplitudes in OSFT using the Feynman rule; yet, it might not look
”very natural” to decompose the world-sheet into vertices and
propagators.

Both figures are by iellwood. License: CC BY-SA 3.0  https://creativecommons.org/licenses/by-sa/3.0/

So, let us look for another way of calculation. (1) Since the scattering
amplitude is an observable (= a physical quantity), it should be
gauge invariant. (2) We also know that a BRST exact state drops from
the on-shell amplitude. These two conditions are key to find the new
formula for the scattering amplitudes.



(Fourth Slide)

Then, we use a classical solution Ψ, a tachyon vacuum solution ΨT , a
set of external states {Oj} as input of the our formula.

our formula
Ψ

ΨT

{Oj}
= (on-shell amplitude)

• The classical solution Ψ specify the D-brane configuration which
we would like to consider.

• The tachyon vacuum solution ΨT is just a reference. The formula
should be independent of the choice of ΨT .

• The external states Oj satisfy the on-shell condition

QΨOj = 0, the ghost number of Oj is 1.



(Fifth Slide) Our formula for the 4pt amplitude is like this:

I(4)Ψ ({Oj}) =
∑

permutation

∫
WΨOσ1WΨOσ3WΨOσ3AOσ4 ,

where ∗-symbol is omitted, and

WΨ = (Ψ−ΨT ) ∗AT +AT ∗ (Ψ−ΨT )

A = AT −AΨ, s.t. QTAT = 1, QΨAΨ = 1.

This I(N)
Ψ has the following symmetry:

1. space-time gauge symmetry
2. decoupling of the null states (∼ the BRST symmetry)
3. replacement of the reference ΨT

4. change the choice of AT or AΨ

We checked this reproduces on-shell amplitudes for Ψ =EM solution,
which is believed to express any (static) D-brane configurations.

増田暢�
(and we observed similar extension to N-point amplitude.)

増田暢�
If you are interested, please check our forthcoming paper. Thank you for your attention.
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Leinweber Center for Theoretical Physics
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Functions of

N = 1
Gauge

Theories on
S

2 ⇥ R2
" and

Dualities

Jun Nian

Results of Z4D N=1

• S1 ⇥ S3 (’13 Closset, Shamir)

• S1 ⇥M3 (’14 Nishioka, Yaakov)

• S4:

– Technical Difficulty:
(’11 Festuccia, Seiberg; ’14 Knodel, Liu, Zayas; ’15 Terashima)

– N = 1 partition function on S4 is unphysical.
(’14 Gomis, Komargodski)

– Analytic Continuation of Dimensions:
(’17 Gorantis, Minahan, Naseer)

• R2
✏ ⇥ T 2 (’15 Fujimori, Kimura, Nitta, Ohashi)

• S2 ⇥ R2
✏ :

ds
2 = `2(d✓2 + sin

2✓ d'2) + |dw � iw`" d'|2
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Jun Nian

N = 1 Localization
Killing spinor equation: (’12 & ’13 Kawano, Matsumiya; ’13 Lee, Yamazaki)

Dµ⌥ =
1
2
�µ�5⌥ , Da⌥ = 0 , µ 2 {1, 2} , a 2 {3, 4}

⌥ = ✏⌦ ⇣+ + ✏̃⌦ ⇣� , ⇣+ = (1, 0)T , ⇣� = (0, 1)T

Lagrangian (Higgs-branch localization ’12 Benini, Cremonesi):

Lexact = � Vgauge + � Vchiral + � VH

with VH =
i

2

h
⌃†�5⌅+ ⌅†�5e⌃

i
(�̄I�I � ⌘)

(Anti-)Vortex at the north (south) pole and the origin:

X
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Z4D N=1 on S2 ⇥ R2
✏

ZIi , ~µi
=

X

mi ,ni

Zclass Z
vec

1-loop Z
chiral

1-loop , Zclass =
NY

i=1

e
�2⇡i(mi�ni )⌧0

Z
vec

1-loop =
NY

i,j=1
i 6=j

x
�

|(m
i
�n

i
)�(m

j
�n

j
)|

2


1 � e

2⇡i

" (emI
i
�emI

j
)
x
|(mi�ni )�(mj�nj )|�(mi+ni )+(mj+nj )

�

Z
chiral

1-loop =

2

64
NY

i=1

NFY

J=1
J 6=Ii

⇣
x

1+ni+mi+2`(emJ�emI
i
)
⌘ ⇢(n)�⇢(m)

2

⇣
x

2+2mi+2`(emJ�emI
i
); x

2
⌘

1⇣
x
�2mi�2`(emJ�emI

i
); x2

⌘

1

3

75

·
"

NY

i=1

1
Qmi�1

q=0 sinh
⇥

i⇡
`" (q � mi)

⇤

#

Relation with N = 2 Nekrasov partition functions (’02 Nekrasov):

Z
N=1 adj

⌦ · Z
N=1 vec

⌦ = Z
N=2 vec

⌦ , Z
N=1 fun (anti-)chiral

⌦ = Z
N=2 fun hyper

⌦
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Possible Applications
• Test Seiberg Duality (’95 Seiberg; ’97 Elitzur, Giveon, Kutasov):

ZU(N)(gYM , #, emi) = ZU(NF�N)(g
D

YM , #D , emD

i )

• N = 2 AGT for non-Lagrangian CFT (’16 Maruyoshi, Song):

N=2 SQCD (Lagrangian)

N=2 A-D (non-Lagrangian)

RG triggered 
by N=1 chiral

(Work in progress)
• N = 1 AGT (’17 Mitev, Pomoni)

• N = 1 instanton counting via 6d N = (1, 0) Flux
=) 4d N = 1?

(’16 Razamat, Vafa, Zafrir; ’17 Bah, Hanany, Maruyoshi, Razamat,

Tachikawa, Zafrir)
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JQ/mH�`Biv 7`QK JQMQ/`QKv
ai`BM; J�i? kyRN @ :QM; a?Qr

h?Q`bi2M a+?BK�MM2F
#�b2/ QM (RNykXy3kR8)- hXaX

�M/ (RNytXttt)- *X 6X *Qi�- �X EH2KK- hXaX

RXdXkyRN



hQTQHQ;B+�H bi`BM; T�`iBiBQM 7mM+iBQM QM
2HHBTiB+f;2Mmb QM2 }#2`2/ *�H�#B@u�m s → "

1HHBTiB+ ;2M2`� Q7 bi`BM;b
7`QK .j@#`�M2b r`�TTBM; +m`p2b BM "

1t?B#Bi KQ/mH�` T`QT2`iB2b5

/m�H pB� 6@i?2Q`v
(EH2KK-J�v`-o�7�ǶNe)-XXX

Zm2biBQM, *�M r2 mM/2`bi�M/ i?2 KQ/mH�`Biv /B`2+iHv
rBi?BM iQTQHQ;B+�H bi`BM; i?2Q`v QM s \

U:Q2b #�+F iQ (*�M/2H�b-6QMi-E�ix-JQ``BbQMǶN9)5V



✒ q2 B/2MiB}2/ 6J@F2`M2Hb i?�i �+i HBF2 Γ0(L) 7Q` 2HHBTiB+
�M/ ;2Mmb@QM2 }#`�iBQMb rBi? `2/m+B#H2 }#2`b

wiQT(⃗i,λ)

E î?H2`
KQ/mHB JQMQ/`QKB2b

6Qm`B2`@JmF�B
i`�Mb7Q`K�iBQMb

"@ivT2
iQTQHQ;B+�H

#`�M2b

ǳ6J F2`M2HǴ
F ∈ .#(s × s)HB7i



1HHBTiB+ }#`�iBQMb rBi? `2/m+B#H2 }#2`b
✒ q�p2 7mM+iBQM BMi2`T`2i�iBQM Q7 wiQT i?2M BKTHB2b

2HHBTiB+ i`�Mb7Q`K�iBQM H�r rX`XiX pQHmK2b Q7 }#`�H +m`p2b

wβ(τ,K1, ...,K� + κτ + ρ, ...,K`F(:),λ)

= 2tT
[
−βB

2

(
* B

��κ
2τ + * B

(�#)κK#
)]

wβ(τ, K⃗,λ) ,

:2Mmb@QM2 }#`�iBQMb UBX2X MQ b2+iBQMV
✒ L2r 2tT`2bbBQMb BM i2`Kb Q7 C�+Q#B 7Q`Kb
✒ q2 bim/v +Q``2bTQM/BM; ǳ1Ǵ@bi`BM;b

h?�MF vQm 7Q` vQm` �ii2MiBQM5
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Localizing Schur correlation functions

Yiwen Pan
JHEP 1802 (2018) 138, arXiv:1903.03623, work in progress

with Wolfger Peelaers

String-Math, Gong show, 2019 July



2/6

Background [Chris Beem’s talk]

• Important progresses
• Beautiful correspondence: 4d N = 2 SCFT and 2d VOA

[Beem, Lemos, Liendo, Peelaers, Rastelli, Bolt van Rees]
◦ Schur operators [O](z): cohomology of special Q
◦ Counted by Schur index ISchur ≡ qc4d/2 tr(−1)FqE−R:
◦ N = (2, 2) defects: non-vacuum modules [Cordova, Gaiotto,

Shao]
◦ Modular differential equations [Beem, Rastelli]

• Localization techniques Nekrasov, Pestun, Kapustin, Willet, Yaakov,
Hama, Hosomichi, and many more



3/6

Questions

• Inspired by a 3d story [Dedushenko, Pufu, Yacoby]

• Localization in the context of this SCFT/VOA

• With localization

Schur index = torus partition function
Correlation functions of Schur operators

Surface defects
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The index

• ISchur as S3 × S1 partition function
• Rigid supersymmetry [Closset, Dumitrescu, Festuccia, Seiberg, ...]

backgrounds (a τ -family) and Killing spinors

• On this geometry:
◦ SYM action is Q-exact: localizing term

• Standard localization: onto a T2

◦ BPS configs: flat connections a and Q, Q̃ on T2 ⊂ S3 × S1

◦ SHM
BPS−−−→ ST2

βγ [Q, Q̃],
∫

D[HM] →
∫

DQDQ̃
◦ SVM

fluctuation−−−−−−−→ ST2

bc [b, c],
∫

D[VM] →
∫

DbDc

ISchur = ZS3×S1 Loc.−−→
∫

daDQDQ̃DbDce−ST2
bcβγ
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• Standard localization: onto a T2

◦ BPS configs: flat connections a and Q, Q̃ on T2 ⊂ S3 × S1

◦ SHM
BPS−−−→ ST2

βγ [Q, Q̃],
∫

D[HM] →
∫

DQDQ̃
◦ SVM

fluctuation−−−−−−−→ ST2

bc [b, c],
∫

D[VM] →
∫

DbDc

ISchur = ZS3×S1 Loc.−−→
∫

daDQDQ̃DbDce−ST2
bcβγ
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The correlation functions

• Schur operator insertions?
Naive Schur letters Q, Q̃,Dz, λz ≡ (λIσzξ̃I), . . .

• “Fatal” problems: fermionic, and NOT Q-closed
• “Generalize” the localization argument: localizability

d
dt

∫
D[Φ]O(zi; t)e−S0−tQV ∼ ⟨∂tO −OQV⟩t = 0

• Serious Schur letters Q, Q̃,Dz,
√

tλz,
√

tλ̃z ⇒ O(z; t)
Schur operators are localizable

• Finally: a matrix integral formula for Schur correlation
functions on S3 × S1
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More

• ISchur satisfies modular differential equations [Beem, Rastelli]

Additional solutions could be accessed by including surface
defects in localization

• Reduction along the time S1: relate to deformation
quantization story [Beem, Peelaers, Rastelli][Chester, Lee, Pufu,
Yacoby]

Thank you!



Fin


