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(Multi-)linear evolution for knot (homology) polynomials
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No go theorems =- no global evolution for Khovanov(-Rozansky)

The answer: set of local evolutions on separate domains
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(Multi-)linear evolution for knot (homology) polynomials

Example of 3d phase diagram. (Genus 2 pretzel knots.

ifeliTelitals

Same color=same evolution formula.

Thanks to Sh. Shakirov for improving this picture!
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Motivation

Vector bundle cohomology is crucial information
in many string theory applications.

One common and important class is line bundles,
e.g. in realistic model-building.

Currently computation is difficult, doesn’t provide insight,
(algorithmic, computer-based, time consuming).

Deeper understanding would be very useful,
e.g. for classification, bottom-up model-building, ...
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Hints from ‘experiment’

Cohomologies described by piecewise polynomial formulae:

[Constantin, Lukas ‘18], [Larfors, Schneider ‘19], [CB, Constantin, Deen, Lukas ‘19]

Two-folds Three-folds
(del Pezzos, toric, ...) (CICYs, toric hyp.)

Key observation:

Polynomials described by map into a ‘fundamental’ region.
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Results

Understood a key aspect:

Maps for h° drop ‘rigid’ pieces of divisor associated to bundle,
mapping to nef cone (Zariski decomposition).

Index expressions for cohomology on surfaces:

For (many) surfaces this is the only effect.
= Index expressions for h° for e.g. all del Pezzos:

Covers many three-fold cases:

Can lift surface cohomology to 1%123 on elliptic CY3.
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Some applications

» Bottom-up model-building
Some CY3 now already covered, e.g. elliptic

» Jumping loci
Systematic understanding, all bundles at once

» Reverse-engineering rigid divisors
Rigid divisors seen in region edges, find by e.g. ML
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M-theory and 7d SYM

M-theory on Gy-manifolds gives a A = 1 theory in 4d (with matter,
coupled to SUGRA)

For interesting 4d physics one needs G,-spaces with singularities in
codimension 4 and 7. Compact examples not known.

Instead consider a (noncompact) local limit [Pantev, Wijnholt]
C?/Tape = X7 — M3, M5 associative.

M-theory reduced on the C2 /T apE fibre

4
partially twisted 7d SYM on RY3 x M5 with ADE gauge group

7d SYM contains a Higgs field ¢ € Q'(ad(gape)). BPS equations give
the Hitchin system on Ms;

Fw —i[$,¢] =0, Dwe¢p=0, Dj,¢=0.



Computing the Chiral Spectrum
Simplified problem ([¢, #] = 0, m1(Ms5) = 0) reduces to

¢ = df, with  Af =0 = no non-constant solutions.

Introduce a source term p along ' C M3 and consider

Af = p, with / p=0.
Ms

Excise tubular neighbourhood @ T(I-)
of T =T, Ul C Ms
(configuration of charges) v v

to get M3 with boundary ¥, UX _. v Me=MAT()
Impose boundary conditions
Dirichlet on X _, Neumann on ¥ .
Chiral spectrum computed by the relative cohomology of a pair (M3, X_)

chiral : HY(M3,%_), conj. chiral : H*(M3,%_).



Localised Matter

Matter is localised at ¢ = df = 0 i.e. critical loci of f and the chiral
fermions are in the kernel of

Af = DD} +DIDr, D =d+dfA
[Witten]: This is Hamiltonian for an SQM and it computes the Morse
cohomology.
Motivated by TCS: What if f has 1d critical loci i.e. is Morse-Bott?

SQM model = Morse-Bott cohomology = recovers H*(M3, ¥ _)

One gains more information from Morse(-Bott) picture:

e gradient curves lift to associatives in the total space of the ALE
fibration = M2-branes

e Yukawa interactions (and higher couplings) can be expressed in
terms of gradient flow trees.



Chiral Spectrum of Twisted Connected Sum

Twisted connected sum Gp-manifolds are built from two building blocks
K3 < Xy — S'xCy.

= the Higgs field ¢ = dfy is Sl-invariant = critical loci are (only)
circles.

Using Morse-Bott theory we can show that in this case
chiral index = 0.
Hence, TCS compactifications do not give rise to chiral spectra.

However, in the local model, one can deform charge configuration to give

chiral spectrum.
&-00-0D
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Quantum Hall Effect: U(1) gauge theory on a torus

conductance | P éy
O 2y Yh
R UV — Cq (E)
magnetic flux ¢
Geometric Langlands
Line bundles on T~ Hecke eigensheaves
L= (LV) —_— Fr
Monopole
X

» magnetic flux @

A

Hecketrans. h ™ : L — L

(L) =1 (L) +1



Duality of Quantum Group  (Frenkel and Hernandez 2011)

Hamiltonian of Quantum Hall Effect

H=T,+T/+T,+T]

1, @¢

1, Ty :Representation of U, (sl>)

_ 2mid



Duality of Quantum Group  (Frenkel and Hernandez 2011)
VT, :Landau Filling Factor
v, =g vp =t + s
Strong/Weak Duality s <>t

2 62

&
¢7 Ory — zt A 1/¢7 Ory — WS

Langlands Duality of Quantum Group

(¢7Z/{Q(Sl2)) A4 (1/¢7Z/{Lq(3l2))

A
energy

et

>¢

(String Theoretical Relation: Hatsuda, Katsura, Tachikawa 20106)




Home Messages

Symmetry Protected Topological (SPT) Matter
would generally respect the Langlands Program

» l(mlq(/n q(—k) }
€ U(2m)| (i0y)q(k)" (—i0y)
rm.2m(C) | 72Q (k)" 72 Q(—k) }
rm.2m(C) | 7y Q(k)" 1y Q(—k) }
e U(2m) (/(/.')' q(—k) }

e U(m) :/(/.",1/ q(—k) } 6 or 8(2or 4| Sp(N)

] Langlands
String » Program
Kapustin and Witten (2005),
Gukov and Witten (2006),

Hausel (2002),
Frenkel and Gaiotto (2018)

fermionic replica topological or

NLoM target space WZW term

l(’\n\l)(\l
U2N)/O(2N)

< Sp \n S]){\l

Schnyder et al. (2009)

Condensed Matter







SCFT/VOA correspondence via (2-deformation
based on arXiv:1904.00927

Saebyeok Jeong
Gong Show, String Math 2019

C.N. Yang Institute for Theoretical Physics, Stony Brook University

*See also [Oh-Yagi '19], [Pan-Peelaers '19], [Dedushenko-Fluder '19].



VOA from (Q+S)-cohomology

Four-dimensional N = 2 superconformal algebra admits a fermionic generator
of the form Q= “Q + S", for which [Beem-Lemos-Liendo-Peelaers-Rastelli-van Rees '13]

@ =0, [@Q Li10-1]=0
@ Q:}=L1+R", {@ S}t=La-R", {QQ}=2L-R).

In particular, R-twisted anti-holomorphic conformal transformations on a plane
are @-exact.



VOA from (Q+S)-cohomology

Four-dimensional N = 2 superconformal algebra admits a fermionic generator
of the form Q= “Q + S", for which [Beem-Lemos-Liendo-Peelaers-Rastelli-van Rees '13]

@ =0, [@Q Li10-1]=0
@ Q:}=L1+R", {@ S}t=La-R", {QQ}=2L-R).

In particular, R-twisted anti-holomorphic conformal transformations on a plane
are @-exact.

Hence, from Schur operators located at the origin,
{@ O] =0, 0O(0)#{q O'(0)],
we can build the twisted-translations of local operators
0(z,2) = et-17210(0)e 17211

whose @-cohomology forms a vertex operator algebra.



VOA for Lagrangian N = 2 superconformal theories

Free hypermultiplet gives symplectic bosons (also known as 37 system).
Free vectormultiplet gives bc ghosts.

For interacting theories, the prescription is first to take the naive tensor
product and then to pass to the cohomology with respect to the
nilpotent BRST operator.

An alternative approach from Q-deformation?



(2-deformation of holomorphic-topological theory

For the N = 2 superconformal theory on € x @1, we can make the
holomorphic-topological twist [Kapustin '06] between U(1)e x U(1)e. and
U(1)r x U(1), C SU(2)r x U(1),, with the scalar supercharge Q = Q' + Q' ,

{Q7 Q«QF} = _,P+¥7 {Q7 éi} = P*‘L
{0,0°}=-{0, 9} =-P_-.

Hence as a Q-cohomological field theory, the N = 2 superconformal theory is
topological along €+ and holomorphic along €.
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For the N = 2 superconformal theory on € x @1, we can make the
holomorphic-topological twist [Kapustin '06] between U(1)e x U(1)e. and
U(1)r x U(1), C SU(2)r x U(1),, with the scalar supercharge Q = Q' + Q' ,

{Q7 Q«QF} = _,P+¥7 {Q7 éi} = P*‘L
{0,0°}=-{0, 9} =-P_-.

Hence as a Q-cohomological field theory, the N = 2 superconformal theory is

topological along €+ and holomorphic along €.

The action for the vector multiplet is Q-exact:
Svee =Q(---).

The action for the hypermultiplet splits into Q-closed part and Q-exact part:

Shyp = / dQZ O%) + Q( o ')., W = / Qz(ai = IAE)Q
®© el



(2-deformation of holomorphic-topological theory

As in [Nekrasov '18], [Costello-Yagi '18] , we can define a deformed supersymmetry
generator Q. such that

Q2 = &(Derty + tvDer) = eLy + Gaugelery A,

where V is the isometry of C. The Q-deformed action can be obtained by
replacing Q by Q..



(2-deformation of holomorphic-topological theory

As in [Nekrasov '18], [Costello-Yagi '18] , we can define a deformed supersymmetry
generator Q. such that

Q2 = &(Derty + tvDer) = eLy + Gaugelery A,

where V is the isometry of C. The Q-deformed action can be obtained by
replacing Q by Q..

The Q.-variations of fermions give
F =0, wF—iDeitvp=0, D=0,
Fz +evDz; =0, D@qu-i-ELvhz = (0), 'DGLE{—FEI,vh:O.
By integrating out the auxiliary fields, fixing a gauge, and introducing polar

coordinates on G+,

1 i i
OtAs = ——qs§', 0. = —=—=D.§', 8:§=-=D.q:
t 2z q, tq 2F q, tq 2 qz,

This is the gradient flow generated by Re (% [L qufc”y) = Re (%) 4



Localization and VOA

Due to the convergence of the action, Az, g, and § should end on the critical
points {dW = 0} as t — co. The remaining two-dimensional path integral is
defined on the gradient flows emanating from those critical points, i.e.,
Lefschetz thimbles.

The action for this two-dimensional path integral is obtained as
10
Si= 7/ d2quD3?7.
€Je

By further fixing the remnant gauge by As; = 0, we arrive at

1 _ U
= Tr b 0y’
8/C r c—|—Zq q

This is the action for the two-dimensional bc-3v system. The algebra of local
operators of this theory recovers the VOA that we wanted.
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Justin Kaidi Modular Graph Functions in Physics

Genus one 4-graviton scattering

e Consider 4 graviton scattering at one loop,
Oé/ 2
— 2R / —84(813, T) Sij = —Z(kz + kj)

—Partial amplitudes By(s, t,u;T) are integrals over vertex operator insertions,

Bai(si;) = H/

d?z;

exp Z S@'jG(ZZ' — Zj|7‘)

1<i<j<4
— We work with the Arakelov Greens function,

0.0.G(z|7) = —m6P(2) + = / dz G(z|7) = 0
>

T2

— Admits a Kronecker-Eisenstein series representation,

T2 2mi(na—mp) D=m + nT
G(zlt) => e .
2 TP 2= atpr



Justin Kaidi Modular Graph Functions in Physics

Diagrammatic Expansion

e We now try to calculate the partial amplitudes in o’-expansion,

w

Bu(si;) = Z H / v 55,G (21 — 2|7)

1<z<]<4

e Graphical notation is useful |15 D'Hoker, Green, Vanhovel,

o o = Gz — z|T) A 2, T
2; Z; i d HG(z — zi|T)
‘ i=1

Zp 1 Zy

e Given any graph I", we have Cr(7) = (Hk 1 fE o ) H1<Z<‘7<m G(z; — z;|T)",

Cr(r) = Z/: <ﬁ > H 5 (Z Fzrpr) “MGF”

P1,--PwEA \7T=1 |pr

~Bxample 1: B, =C[{ 1] = X)ca (Tﬁ)w

— Example 2: C111 = C|<>] = S (r2/m)’ a2 d(p1 + p2 + p2)

P1,P2:P3EN |pq|2|pgy|2



Justin Kaidi Modular Graph Functions in Physics

Relations between MGFs
e Modular graph functions obey a rich set of identities.

— Algebraic identities, e.g.

Cii1 = E3+¢(3)
7C2221 = 21E4E34 14C3299 + 28C42; — 31E5
— All such algebraic identities up to weight 7 obtained via sieve algorithm

in ['16 JK, D'Hoker].
— Special class of identities: “holomorphic subgraph reduction” ['18 JK, Gerken]

~ -
-----

— Differential identities, e.g. ['16 JK, D'Hoker]
(A —w(w—1))E, =0 (A —2)Co11 =9E, + E;

— Fourier and Poincaré series obtained in ['18 D'Hoker, Duke; ‘19 JK, D'Hoker].
This enables integration of MGFs to get full string amplitudes!



Justin Kaidi Modular Graph Functions in Physics

The End (for now)

Thank youl!
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Super Riemann Surfaces

Definition
A super Riemann surface is a complex supermanifold M of
dimension 1|1 together with a holomorphic distribution D C TM

such that the commutator of vector fields induces an isomorphism
DD — Mg,

Theorem (EK?, see also Howe 1979)

Let i: |[M| — M be a map from a 2|0-dimensional manifold into a
2|2-dimensional supermanifold which restricts to the identity of
topological manifolds. A super Riemann surface structure is
equivalent to a Riemannian metric g, a spinor bundle S and a
gravitino x € T (TY|M| ® S) on |M| (up to Weyl- and super Weyl
transformations).

1KeBler (2019). Supergeometry, Super Riemann Surfaces and the
Superconformal Action Functional. Springer LNM 2230, to appear



Super J-holomorphic curves

Definition
Let | be the almost complex structure on M and N a symplectic

manifold with compatible almost complex structure J. For
®: M — N, define the operator D ;& € I (DY @ &*TN)%! by

1
Dy® =7 (d+Joddol)|p.

We will call maps ® such that D ;& = 0 super J-holomorphic
curves.

e |f the almost complex structure J is integrable the map ¢ is
holomorphic.

e If ® is a super J-holomorphic curve it is a critical point of the
superconformal action on M, or “spinning string”.



Space of maps M — N

For i: [M| = M and ®: M — N define the component fields

p=®o0i: M = N,
Y =10"do|, el (S ®@¢"TN),
F=i*AP® e T (¢*TN).

e In good coordinates (x?,7%) on M:
®(x,n) = (x) + 1 B(x) + 17" F(x)

e There is a supermanifold structure on Hom(M, N) given by
the exponential map and charts around (o, ¥0, Fo) given by

F(egTN) BT (SY @@y TN) & T (95 TN).



Moduli space of super J-holomorphic curves

®: M — N is a super J-holomorphic curve if and only if in
component fields

0=y +1xJY, 0=Fel(¢"TN),

~ 1
0=20,0+(Qx,¢¥) + 7 ey (Y, " VI) 19,

0=Dp""y—(1+18J) (2 (VQx, dg) — ;SRN(¢)> .

e The moduli space of super J-holomorphic curves should obtain
a subsupermanifold structure from Hom(M, N).
e The expected real dimension of the moduli space is

indd,|ind P™°
=2n(1 = p) + 2 (c(TN), A) [2(n — 1)(1 — p) + 2 (c1(TN), A) .

where p is the genus of M, 2n is the real dimension of N and
A = [imp] € Ha(N).
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Preprint is available at wanminliu.github.io



MOTIVATION

X smooth proj var/ ¢
g(x) bounded derived category of coherent sheaves

3 € At (D)

(Mumford slope, Gieseker, PT, Bridgeland etc)

/

0 - stability condition ww» & -invariant

! %

o= $o) w~s  §-invariant

relation/ symmetry/ modularity 7

&-— - -



QUESTION

singular fibers: nodal or cusp

§ elliptic X elliptic fiberation .
/ with a section § ©=-e
/ W@re@ ~ J{Se
[
~ ‘L je
— B B over a smooth base

b A2 .
§  relative Fourier-Mukai transform € Aut( D (X) P33 =390 = gy

W% slope stability condition ( Mg 1= 25 (gix)) = @+miyeod
ample nef
fixed positive number

What is a notion of stability condition
for slope stability condition under $ra ?

Key Premise: we do NOT fix Chern characters
(Otherwise, lots of work by Bruzzo, Maciocia, Yoshioka and many...)



Limit Bridgeland Stability Condition o

w=WU@+wf)+ vF
along CURVE W+ UV = o{4m-e ¥

Coh (X)
i (Te. Fa)
Y, limit olong
B 0s oy tgw = <‘F"~’[\]' (T"-’>
0 ' ‘ O = (By=- ;( e¥eht) B,)
0 = (Z B) = QJV" Ow Bridgeland stab condition
V> +oo

Otlw\clj x®



Limit Bridgeland Stability Condition o

D) D'X) W= U(@+af)+ vf

L) == F W]

3 ~ V&u

along CURVE W+ UV = o{4m-e ¥

Thm (8) “\Thm (&) \ Coh (X)
i (Te. Fa)
Y, limit olong
B S  y-o e CBW = <‘F"~’[\]' (T"-’>
0 ' ‘ O = (By=- ;( e¥eht) B,)
0 = (Z B) = QJV" Ow Bridgeland stab condition
V> +oo

Otlw\clj x®



Theorem (L—LO) CohlX) % F(ConO)0]

Thm (B) Thm (A)

X Weierstrass elliptic surface

Fo1
( A) ( p.;—s’rabili’ry. Coh(X) —>

E')};, stote

!

(B)  (ps-semistability, (ab0) <

>

small modification
$(F') - Mg-ss 3

9
(Z- stability, °)

Fed@erm Z-sebe

!

(Z-semistability, B')

O=F—>F >F'—o0

3(¥') torsion sheaf

in

B

e






Deriving on-shell open string field amplitudes
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(First Slide)

I would like to thank the organizers for giving me this opportunity
to introduce my recent research, and also thank you all for coming to
this session. It is a great honor to be able to speak to you today.

My talk subject is related to open string field theory and how to
derive on-shell scattering amplitudes in this framework, but it’s not a
very familiar topic of the recent String-Math Conferences. So, let me
first explain “what is the open string field theory” briefly.

Advertisement
this talk is based on a collaborative work with H. Matsunaga,
arXiv:1907.7** (coming soon).




(Second Slide)
Open string field theory (OSFT) is a field-theoretic formulation of

open string theory. Today, we consider Witten’s bosonic OSFT whose
action has a close resemblance to the 3-dim. Chern-Simons theory:

S[CID]:—%/CI)*QBCI)—%/CI)*CD*CI)

Qp - H—>H, xHxH—->H, [:H—=>R

Witten’s open SFT | 3dim. Chern-Simons theory
* A
@B d

ghost number rank of the differential form

Algebraic structure looks almost the same; but objects with negative
ghost number make OSFT dynamical (and interesting in a sense).



(Third Slide)

As usual (local) quantum field theory, we can compute the scattering
amplitudes in OSFT using the Feynman rule; yet, it might not look
“very natural” to decompose the world-sheet into vertices and
propagators.

Both figures are by iellwood. License: CC BY-SA 3.0 https://creativecommons.org/licenses/by-sa/3.0/

So, let us look for another way of calculation.

—_—

-

(2) We also know that a BRST exact state drops from
the on-shell amplitude. These two conditions are key to find the new
formula for the scattering amplitudes.



(Fourth Slide)

Then, we use a classical solution ¥, a tachyon vacuum solution ¥, a
set of external states {O,} as input of the our formula.

v .
VUr —| our formula | = (on-shell amplitude)
19, —

e The classical solution ¥ specify the D-brane configuration which
we would like to consider.

e The tachyon vacuum solution ¥ is just a reference. The formula
should be independent of the choice of V.

o The external states O; satisty the on-shell condition

QvO; =0, the ghost number of O; is 1.



(Fifth Slide) Our formula for the 4pt amplitude is like this:

I\(IJ4)({Oj}) — Z /W‘I’OMW‘I’OG:),W\POJ?,AOM?

permutation

where x-symbol is omitted, and

(and we observed similar extension to N-point ampiiude)
Wy =W —-Up)x Ap + Ap x (U — Urp)
A=Ar — Ay, st. QrAr =1 QvAy =1
This 1 \(I,N) has the following symmetry:

1. space-time gauge symmetry

2. decoupling of the null states (~ the BRST symmetry)
3. replacement of the reference ¥

4. change the choice of A7 or Ay

We checked this reproduces on-shell amplitudes for ¥ =EM solution,
which is believed to express any (static) D-brane configurations.


増田暢�
(and we observed similar extension to N-point amplitude.)

増田暢�
If you are interested, please check our forthcoming paper. Thank you for your attention.
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Jun Nian
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Based on 1812.11188 with Kimura, Zhao
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Partition
Functions of

N =1 Results of Zyp pr—1
Gauge
Theories on
§? x BZ and « S' x S8 (13 Closset, Shamir)
Dualities
Jun Nian + 8" x M3 (14 Nishioka, Yaakov)
. S*:

— Technical Difficulty:

('11 Festuccia, Seiberg; 14 Knodel, Liu, Zayas; 15 Terashima)
— N = 1 partition function on S* is unphysical.

(*14 Gomis, Komargodski)
— Analytic Continuation of Dimensions:

('17 Gorantis, Minahan, Naseer)
* R2 x T2 (15 Fujimori, Kimura, Nitta, Ohashi)
« $2 x RZ:

ds® = (2(d#? + sin®0 dp?) + |dw — iwle dp?



Partition
Functions of

e N = 1 Localization

Gauge
HSEHES @ Killing spinor equation: (*12 & '13 Kawano, Matsumiya; '13 Lee, Yamazaki)

S? x ]Ri and
Dualities 1
DNTZEF#I_E’T’ DaT:o, ﬂ€{172}7 ae{s, 4}

T=caG+ead, ¢=01,0", ¢ =01
Lagrangian (Higgs-branch localization *12 Benini, Cremonesi):

Lexact = 0 Vgauge + 6 Vepirat + 0 Vi

Jun Nian

with Vi = 2 [ETs= + 2155 (80! - 1)

(Anti-)Vortex at the north (south) pole and the origin:

1




Partition
Functions of

= Zip -1 ON S? x R?
Gavge 4D N'=1 €
Theories on
82 x IRZE and
N
Dualities j
2 : vec chlral _ —2mi(mj—n;)T(
Jun Nian Z/h Hi ZC]HSS Zl -loop l -loop » chass - H e (mi=ni)o
ml7nl i
|(mj—nj)—(m;j—nj)| 2mi (7,
Zi5, = H U s {1 _ eg’(m,,_w,}_)x‘(m,_n,)_(m,_nj”_(m,+,,,)+(m,+nj)]
ij=1
i#j
N Ne o () — p(m) (X2+2m,-+2£(mJ—m,i); XZ)
Zehial _ H ( 1+n,+mf+2e(mJ—m,i))7z o
1 -loop — P
—2m;—2¢(my—my.) .
plenie (X j—24(my ’I),X2)
J#; oo

N 1
M itz

Relation with A/ = 2 Nekrasov partition functions (02 Nekrasov):

N=1 adj N=1vec __ -N=2 vec N'=1 fun (anti-)chiral __ —N'=2 fun hyper
ZQ ' ZQ - ZQ ZQ - ZQ

)



Partition

Functions of . . .
N =1 Possible Applications
Gauge

Theories on . .

2 x R2 and * Test Seiberg Duality (95 Seiberg; '97 Elitzur, Giveon, Kutasov):
Dualities

Jun Nian Zuny(9ym, 9, Mi) = Zyne—ny (99, 92, MP)

* N =2 AGT for non-Lagrangian CFT (16 Maruyoshi, Song):

|N:2 SQCD Lagrangian)|

RG triggered
by N=1 chiral

|N=2 A-D (non—Lagrangian)|

(Work in progress)
* N =1 AGT (17 Mitev, Pomoni)

* N = 1 instanton counting via 6d A" = (1,0) Fux 4d N =17
(16 Razamat, Vafa, Zafrir; 17 Bah, Hanany, Maruyoshi, Razamat,

Tachikawa, Zafrir)
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Topological string partition function on
elliptic/genus one fibered Calabi-Yau X — B

dual via F-theory

[Klemm,Mayr,Vafa’96],...

Elliptic genera of strings
from D3-branes wrapping curves in B

Ezhibit modular properties!

QUESTION: Can we understand the modularity directly
within topological string theory on X7

(Goes back to [Candelas,Font,Katz,Morrison’94] /)



B-type
topological
branes

Fourier-Mukai
Z = )\ transformations
top ( ) ) \

“FM kernel”

i F e DX x X)

Kahler. Monodromies
moduli

»¢ We identified FM-kernels that act like I'g(N) for elliptic
and genus-one fibrations with reducible fibers



Elliptic fibrations with reducible fibers

= Wave function interpretation of Zi,, then implies
elliptic transformation law w.r.t. volumes of fibral curves

Zg(T, M1y ey Mg + KT + Py ooy M), A)

=exp [—é’ (Céa/i%' F C(iab)/imb)} Zg(T,m, \),

Genus-one fibrations (i.e. no section)
¢ New expressions in terms of Jacobi forms

*¢ We study corresponding “E”-strings

Thank you for your attention!






Localizing Schur correlation functions

Yiwen Pan
JHEP 1802 (2018) 138, arXiv:1903.03623, work in progress

with Wolfger Peelaers

String-Math, Gong show, 2019 July



Background [Chris Beem’s talk]

® |mportant progresses
e Beautiful correspondence: 4d N =2 SCFT and 2d VOA

[Beem, Lemos, Liendo, Peelaers, Rastelli, Bolt van Rees]

o [O](2): cohomology of special Q

o Counted by Isehar = %44/ tr(—1)F¢P—E:

o N = (2,2) defects: non-vacuum modules [Cordova, Gaiotto,
Shao]

o Modular differential equations [Beem, Rastelli]

® | ocalization techniques Nekrasov, Pestun, Kapustin, Willet, Yaakov,

Hama, Hosomichi, and many more
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® Inspired by a 3d story [Dedushenko, Pufu, Yacoby]
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Questions

® Inspired by a 3d story [Dedushenko, Pufu, Yacoby]
. in the context of this SCFT/VOA

® With localization

Schur index = torus partition function

Correlation functions of Schur operators
Surface defects
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The index

Ischur as 5% x ST partition function

Rigid supersymmetry [Closset, Dumitrescu, Festuccia, Seiberg, ...]

backgrounds (a 7-family) and Killing spinors

On this geometry:

o SYM action is Q-exact: localizing term

Standard localization: onto a T2

o BPS configs: flat connections a and ), Q on 7% C % x §'
o S S22 SEﬁ[Q, Q. [ DMEM] - [ DQDQ

o SVM fluctuation ng[b, C], f D[VM] N f DbDe

_ sixst Loe [ R
[S(:hur =27 — daDQDCJDbD(,C beBy
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The correlation functions

Schur operator insertions?
Naive Schur letters Q, Q, D,, \, = (/\Iazgl), .

“Fatal” problems: fermionic, and NOT Q-closed

® “Generalize” the localization argument: JLTeE][F£]5]113Y

%/D[@]O(zi; t)e 50~V ~ (9,0 — 0QV), =0

Serious Schur letters Q, Q, D,, V/t\., Vi), = O(z t)

Schur operators are localizable

Finally: a matrix integral formula for Schur correlation

functions on S® x St



More

® Js.nur Satisfies modular differential equations [Beem, Rastelli]

Additional solutions could be accessed by including surface
defects in localization

® Reduction along the time S': relate to deformation
quantization story [Beem, Peelaers, Rastelli][Chester, Lee, Pufu,
Yacoby]

Thank you!






