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Hall Effect

jx = σxy (T )Ey

I = σxy (T )VH
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Quantum Hall Effect

If there is an energy gap ∆ between the ground state and excited states,
then for T � ∆ the Hall conductance is “quantized”:

σxy (0) ' k

2πN
, k ∈ Z

where N is the number of ground states on a torus (N = 1 for IQHE).

At T = 0 there is no dissipation, and the Hall effect can be described by a
classical field theory (Chern-Simons theory):

S =
1

2
σxy (0)

∫
AdA.

Robustness of σxy (0) (invariance under deformations of the Hamiltonian
which do not close the gap) can be explained by non-renormalization of
the Chern-Simons action.
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Boundary-bulk correspondence for QHE

When σxy (0) 6= 0, there have to be gapless edge modes. If we assume they
are described by a 1+1d unitary CFT, then there must be a U(1) current
algebra such that

kR − kL
2π

= σxy (0).

Here kR (resp. kL) is the level of the holomorphic (resp. anti-holomorphic)
U(1) current algebra:

j(z)j(w) ∼ kR/2π

(z − w)2
.

kR − kL measures ’t Hooft anomaly for U(1) symmetry. This provides
another explanation for the robustness of σxy (0).

The anomaly inflow argument implies that kR − kL is independent of the
choice of the edge.
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Thermal Hall Effect

〈jEx 〉 = κxy (T )∂yT

〈IE 〉 = κxy (T )∆T
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Thermal Hall Lore

In a gapped 2d system one must have κxy (T ) = aT + O(e−∆/T ).

The coefficient a is robust under deformations of the Hamiltonian
which do not close the energy gap.

The coefficient a is related to the chiral central charge of the edge
modes:

a =
π

6
(cR − cL).

Thermal Hall Effect can be described by a gravitational Chern-Simons
action

Sgrav ∼
∫

Tr

(
ωdω +

2

3
ω3

)
.
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Bulk-boundary correspondence for cR − cL

Consider a strip 0 ≤ y ≤ L with edges at temperatures T0 and T1.
Assume |T1 − T0| � 1

2 (T1 + T0). Assume all temperatures are much
smaller than the bulk energy gap ∆.

The energy current arises from the edge modes. Modular anomaly implies
that the equilibrium energy current in a CFT is

〈IE 〉CFT =
π

12
(cR − cL)T 2.

The net energy current in the x direction is

〈IEx 〉 '
π

12
(cR − cL)(T 2

1 − T 2
0 ) =

π

6
(cR − cL)

T1 + T0

2
∆T .

Hence κxy (T ) ' π
6 (cR − cL)T .
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Difficulties with the Thermal Hall Lore

No natural way to couple typical cond-mat systems to a metric, so
gravitational response is ill-defined.

Chern-Simons action does not lead to Thermal Hall effect anyway
(gives energy flux proportional to 2nd derivatives of T )

Not clear why a should be robust under deformations

Not clear why cR − cL must be independent of the edge (the anomaly
inflow argument does not work because the bulk cannot be coupled to
gravity)

No good microscopic formula for κxy (T ) which would help one to
resolve these issues (there is a Kubo formula for σxy (T )).
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Some answers

Independence of cR − cL of the choice of the edge can be shown if
one assumes that a well-defined microscopic system in equilibrium
cannot have a nonzero energy current

In the case of electric currents, this is known as Bloch’s theorem; the
energy version of Bloch’s theorem requires an entirely new argument

Thermal Hall conductance is not a well-defined bulk transport
coefficient, hence the difficulties with writing a good microscopic
formula for it

Derivatives of κxy w. r. to parameters are well-defined and one can
write a formula for them

κxy/T is not a function on the parameter space but an exact 1-form
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Bloch’s theorem

F. Bloch showed (1933) that in a quasi-1d system of particles one has

〈Ix〉 = 0

This is a pre-requisite for Ohm’s law and is more general than Ohm’s law
(holds in superconductors and integrable systems, even though Ohm’s law
does not apply there).

Can also be proved for lattice systems (H. Watanabe, 2019).

Proof relies on charge quantization (D. Bohm, 1949)

Does not apply to 1+1d field theories with a U(1) anomaly.

Specifically, if one perturbs a 1+1d CFT with a U(1) symmetry by a
chemical potential µ, then

〈Ix〉 =
(kR − kL)µ

2π
.
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Bloch’s theorem and QHE

Bloch’s theorem implies that kR − kL does not depend on the choice of
the edge.

Consider a ”nice” 2d system (lattice system or particles with short-range
interactions) with an energy gap ∆ for T � ∆ on a strip 0 ≤ y ≤ L. The
edges at y = 0 and y = L may be different.

By Bloch’s theorem, 〈Ix〉 = 0. On the other hand, since there are no bulk
excitations, the energy current comes entirely from the two edges.

Suppose each edge is described by a CFT. Perturbing by a chemical
potential must still give 〈Ix〉 = 0, hence kR − kL must be the same for the
two edges.
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Bloch’s theorem for the energy current

It is intuitively clear that Bloch’s result should also apply to the energy
current. But Bloch’s proof does not generalize to the energy current.

Nevertheless, one can prove it both for lattice systems and particle systems
if one assumes that there are no phase transitions in 1d for T > 0 (Lev
Spodyneiko and AK, 2019).

We use a deformation argument: show that the net energy current does
not change under a large class of deformations of the Hamiltonian. Then
deform the Hamiltonian to zero (for lattice systems) or to a free
Hamiltonian (for particle systems).
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Energy Bloch theorem and the chiral central charge

The energy Bloch theorem implies:

A lattice system or a particle system cannot flow to a 1+1d CFT with
a nonzero cR − cL

For a 2d system with a bulk energy gap, cR − cL for the edge modes
is independent of the choice of the edge.

Can use this to give a boundary definition of a in κxy (T ) = aT + . . .:

a =
π

6
(cR − cL).
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Is Thermal Hall conductance well-defined?

Thermal Hall conductance is really the skew-symmetric part of the heat
conductance tensor:

jEi = −κSij∂jT + εijκxy∂jT .

It gives no contribution to the conservation equation ∂ρE

∂t = −∂k jEk , since

∂i (εijκxy (T )∂jT ) = 0.

Moreover, the contribution of κxy to the net energy current across a
section of a system can be written as a boundary term:∫ L

0
dy κxy (T )∂yT = ν(T (L))− ν(T (0)),

where ν(T ) =
∫ T

κxy (u)du.
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Kubo formula for Hall conductance

Let 〈...〉 denote Gibbs average at temperature T = 1/β. The Kubo pairing
of two operators is defined as

〈〈A;B〉〉 =
1

β

∫ β

0
dτ 〈eHτAe−HτB〉 − 〈A〉〈B〉.

Hall conductance can be computed as

σxy (T ) =
1

2
lim
s→0

lim
V→∞

β

V

∫ ∞
0

e−st〈〈Jx(t); Jy (0)〉〉dt − (x ↔ y).

Here Jk =
∫
V d2r jk(r), and A(t) = e iHtA(0)e−iHt .
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Kubo formula for thermal Hall conductance

The naive analog of this for thermal Hall conductance is

κKuboxy (T ) =
1

2
lim
s→0

lim
V→∞

β2

V

∫ ∞
0

e−st〈〈JEx (t); JEy (0)〉〉dt − (x ↔ y).

But it is not correct: typically diverges as T → 0 instead of vanishing.

Reason: one cannot formulate the computation on a torus, so boundary
contributions are important.

A way to correct the naive Kubo formula for κxy was proposed by Cooper,
Halperin and Ruzin (1997).
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Energy magnetization

In equilibrium one has 〈∂k jEk 〉 = 0. Hence locally

〈jEk (r)〉 = εkj∂jM
E (r).

ME (r) is defined up to a constant and is called energy magnetization.

Cooper et al. proposed a modified Kubo formula for κxy :

κxy = κKuboxy − 2 lim
V→∞

β

V

∫
ME (r)d2r. (1)

There are several derivations in the literature by now, usually in the
context of hydrodynamics.
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Problems with energy magnetization

What if the space is not simply-connected? Can ME (r) become
multi-valued? Equivalently, if we regard jE as a 1-form, then
d〈jE 〉 = 0. Can solve 〈jE 〉 = dME only if the cohomology class of
〈jE 〉 is trivial.

If ME is univalued, it is only defined up to a constant. How do we fix
the constant?

The 1st problem actually does not arise thanks to the energy Bloch
theorem.

The 2nd problem is more serious than it seems because the ”constant”
may depend on T and other parameters.
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Energy magnetization as a 1-form

Kitaev (2006):
For lattice systems, derivatives of ME (r) with respect to parameters of the
Hamiltonian are well-defined.

Let µE = DME , where D denotes exterior derivative on the parameter
space. Then

Dκxy = DκKuboxy − 2 lim
V→∞

β

V

∫
µEd2r

is a well-defined closed 1-form on the parameter space.

One can include T among the parameters using a homogeneity relation:
rescaling H 7→ λH and T 7→ λT does not affect any expectation values.
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Thermal Hall conductance as a 1-form

More precisely, since κKuboxy and βµE are homogeneous of degree 1 under
H 7→ λH, it is d(κxy/T ) which is a closed 1-form on the parameter space
which includes T .

We can try to define the difference of κxy/T for two materials by
integrating the 1-form along a path connecting them.

But what if the result depends on the path? In other words, what if this
1-form is closed but not exact?

What is the topology of the parameter space, anyway?
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Energy currents on a lattice

Let Λ ⊂ Rd be a “lattice”, and H =
∑

p∈Λ Hp be a Hamiltonian. Local
Hilbert space are assumed finite dimensional. [Hp,Hq] = 0 if |p − q| > δ.

Define the energy current from q to p as JEpq = i [Hp,Hq]. Then one has a
lattice conservation equation

dHp

dt
=
∑
q∈Λ

JEpq.

Note JEpq = −JEqp.

Note also that JEpq = 0 if |p − q| > δ, but the energy current does not just
flow between nearest neighbors.
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Vietoris-Rips chain complex

Fix δ > 0.
A Vietoris-Rips n-chain on Λ is a skew-symmetric function of n points of Λ
which vanishes whenever any pairwise distance is greater than δ.

An exponential VR n-chain is defined similarly, but the function decays
exponentially whenever the points are far apart.

Boundary operator lowers the degree of a chain:

(∂A)(p1, . . . , pn) =
∑
p0∈Λ

A(p0, p1, . . . , pn).

It satisfies ∂2 = 0 thanks to skew-symmetry.

JEpq is an operator-valued 1-chain in the VR chain complex.
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Energy magnetization on a lattice

In a stationary state
∑

q∈Λ〈Jpq〉 = 0. One expects there exists a

skew-symmetric function ME
pqr : Λ× Λ× Λ→ C such that

〈JEpq〉 =
∑
r

ME
pqr .

ME
pqr is a 2-chain such that 〈JE 〉 = ∂ME . It is defined up to

ME 7→ ME + ∂P where P is a 3-chain. One expects ME
pqr to decay rapidly

when distances between p, q, r are large.

Kitaev (2006): there is no canonical expression for ME , but there is a
canonical expression for variation of ME w.r. to parameters of H. Let

µEpqr = −β〈〈DHp; JEqr 〉〉+ cyclic permutations.

Then
D〈JE 〉 = ∂µE .
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Cochains

Fix δ > 0.

An n-cochain is a skew-symmetric function of n + 1 point of Λ which
either grows sub-exponentially when points are far apart, or is defined on
some neighborhood of the diagonal.

The evaluaton of a cochain α on a chain A is

A(α) =
1

(n + 1)!

∑
p0,...,pn

A(p0, . . . , pn)α(p0, . . . , pn).

Not always defined because of convergence issues. To make well-defined,
need to assume that α(p0, . . . , pn) decays when p0, . . . , pn are far from a
fixed point on Λ.

Coboundary operator δ is defined via ∂A(α) = A(δα). It satisfies δ2 = 0.

We also have a supercommutative cup product on cochains such that
δ(α ∪ β) = δα ∪ β ± α ∪ δβ.
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Hall conductance on a lattice

Consider a 2d lattice system, H =
∑

p Hp with a U(1) symmetry
Q =

∑
p Qp where each Qp acts only on site p and [Q,Hp] = 0.

A convenient formula for Hall conductance where V is already infinite:

σxy (T ) =
1

2
lim
s→0

β

∫ ∞
0

e−st〈〈J(t)(δf ); J(0)(δg)〉〉 − (f ↔ g).

Here Jpq is the U(1) current on the lattice, Jpq = i [Qp,Hq]− i [Qq,Hp],
and f and g are functions on R2 which are smeared step-functions in x
and y directions, respectively.

Key fact: The above expression does not depend on the choice of f and g
provided Kubo pairings of currents decay both in space and time.

Proof uses [Qp,Qq] = 0.

Anton Kapustin (California Institute of Technology)Chiral central charge and Thermal Hall effect on a lattice June 30, 2019 26 / 33



Thermal Hall conductance on a lattice

A naive generalization to the thermal case is

κKuboxy (T ) =
1

2
lim
s→0

β2

∫ ∞
0

e−st〈〈JE (t)(δf ); JE (0)(δg)〉〉 − (f ↔ g)

It does not work because [Hp,Hq] 6= 0 in general. Need a correction from
energy magnetization.

Key idea: correct not the naive Kubo formula for κxy but its derivative w.
r. to parameters:

Dκxy (T ) = DκKuboxy (T )− 2βµE (δf ∪ δg).

This is a 1-form on the space of parameters.
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Phase transitions

Can regard T as one of the parameters, but then have to work with
Ψ = D(κxy/T ). We regard T = 0 as the boundary of the enlarged
parameter space.

Correlators and Kubo pairings decay away from phase transitions (1st or
2nd order). The above formulas and statements make sense only away
from phase transitions.

Once we remove the locus where phase transitions occur, the topology of
the parameter space can become complicated.

It is very plausible that the parameter space is connected, since we are
allowed to break all symmetries.
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Path-independence of the relative thermal Hall
conductance

Given any two points a and b in the enlarged parameter space with finite
correlation length and time, we can try to define the difference of κxy/T
for a and b by ∫

Γ
Ψ,

where Γ is any path connecting a and b (and avoiding phase transitions).
But does it depend on the choice of Γ?

No, Ψ is exact. This follows from the fact that µE (δf ∪ δg) can be
written as an exact expression up to exponentially small terms.
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A relative invariant of gapped 2d systems

Let a and b be two 2d lattice systems at T = 0 with gapped
Hamiltonians. Suppose there is a path Γ from a to b. Let

κ(a, b) =

∫
Γ

Ψ.

We showed that κ(a, b) is independent of the choice of Γ.

The physical meaning of κ(a, b) is the difference of the values of
limT→0(κxy/T ) for a and b.
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A relative invariant of gapped 2d systems, cont.

We have also argued (non-rigorously):

κ(a, b) is well-defined (integral is convergent)

κ(a, b) does not change as one varies the endpoints a and b provided
no phase transition is crossed.

κ(a, b) is equal to π
6 (cL − cR) where cL − cR is the chiral central

charge of the modes living on the junction between phases a and b

To argue items 1 and 2 we assumed that the limits T → 0 and V →∞
commute.
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Thermal Hall conductance for free fermions

Consider free fermions on a lattice, with a U(1) symmetry. This means
that H has the form

H =
∑
p,q

hpqa
†
paq,

where ap, a
†
p generate Clifford algebra, and hpq has finite range.

Here there are two invariants: σxy (0) and
∫ 0
∞Ψ = limT→0(κxy/T ).

One can evaluate Ψ explicitly on the path Γ along which only T changes
and get

lim
T→0

κxy
T

=
π2

3
σxy (0).

This is known as Wiedemann-Franz law (by analogy with the texbook
relation between ordinary heat conductivity κxx and ordinary electric
conductivity σxx which holds in classical theory of transport).
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Concluding remarks

I explained a way to identify bulk correlators in gapped 2d systems
which control gravitational anomalies in the edge CFT

These correlators are deformation invariants of gapped 2d
Hamiltonians

Can be generalized to higher dimensions, providing a way to test the
conjecture that cobordisms control gapped phases of lattice systems

Can be generalized to invariants of families of gapped systems
(higher-dimensional generalizations of Berry curvature)

A more powerful approach is needed to show that for lattice systems
the invariants are rational numbers.
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