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“To think freely is great,...
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“To think freely is great, but to think rightly is greater”
(Thomas Thorild, 1759-1808)
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Motivation and summary

Study compactifications of heterotic string on manifolds with G2 structure.

Math motivation
New perspective on geometry, deformations, invariants,...

In particular: understand coupled moduli space of vector bundle and geometry.

Physics motivation

Determine effective field theory of heterotic compactifications.
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Motivation and summary

Heterotic string to O(α′)
Green, Schwarz:84, Gross et.al.:85, Bergshoeff, deRoo:89

Bosonic fields: Metric G , B-field B, dilaton φ, gauge field A for G ⊂ E8 × E8

Fermionic fields: Gravitino, dilatino, gaugino

Compactifications M10 =ME × Y

SUSY ⇐⇒ ∃ spinor λ on Y , nowhere vanishing, Killing: ∇Hλ = 0

∃ connection A on V → X , γmnFmn(A) = 0

Anomaly cancellation H = dB + α′

4 (CS(A)− CS(Θ))

7-manifold Y : λ ⇐⇒ G2 structure ϕ

Goal: geometry and moduli of heterotic G2 system [(Y , ϕ), (V ,A), (TY ,Θ),H]
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Motivation and summary

Goal: geometry and moduli of heterotic G2 system [(Y , ϕ), (V ,A), (TY ,Θ),H]

Key ideas:

Reformulate heterotic system as nilpotent differential Ď
Ď acts on Q-valued forms, where topologically Q = T ∗Y ⊕EndTY ⊕EndV .

Infinitesimal moduli counted by Q-valued canonical G2 cohomology H1
Ď(Q).

Comparison with 4D N = 1 Strominger–Hull system.
cf. talk by Lara Anderson

Superpotential.

Conclusions and outlook.
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G2 structures
Bonan:66, Fernandez–Gray:82, Bryant:87,03, Hitchin:00, Joyce:00, Chiossi–Salamon:02

Goal: geometry and moduli of heterotic G2 system [(Y , ϕ), (V ,A), (TY ,Θ),H]

(Y , ϕ) has G2 structure specified by non-degenerate associative 3-form ϕ

Comment: true whenever Y is orientable and spin (and π1(Y ) = 0).

ϕ → Riemannian metric gϕ on Y , and a coassociative 4-form ψ = ∗ϕ

Heterotic compactifications:

SUSY constrains dϕ and dψ, i.e. the torsion of the G2 structure
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G2 structures
Fernandez–Ugarte:98, Friedrich–Ivanov:01, Gauntlett et.al.:01, ...

(Y , ϕ) has G2 structure specified by non-degenerate associative 3-form ϕ

Torsion: decompose into torsion classes ∼ irreps of G2:

dϕ = τ0 ψ + 3 τ1 ∧ ϕ+ ∗τ3 ,

dψ = 4 τ1 ∧ ψ + ∗τ2 ,

Λ4 = Λ4
1 ⊕ Λ4

7 ⊕ Λ4
27 ,

Λ5 = Λ5
7 ⊕ Λ5

14 .

Heterotic compactifications:

SUSY ⇐⇒ τ0 constant, 2τ1 = dφ, τ2 = 0  integrable G2 structure.

Λk(Y ) decomposes into Λk
p(Y ), p denotes G2 irrep. Find these using ϕ:

Example: Λ1 = Λ1
7 = T ∗Y ∼= TY

=⇒ any β ∈ Λ2 decomposes as β = αyϕ+ γ , where α ∈ Λ1 and γyϕ = 0
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G2 structures

(Y , ϕ) has G2 structure specified by non-degenerate associative 3-form ϕ

Heterotic compactifications:

SUSY =⇒ τ2 = 0  integrable G2 structure:

dϕ = iH(ϕ) , dψ = iH(ψ) where H = 1
6
τ0 ϕ− τ1y7 ψ − τ3 .

No H-flux ⇐⇒ Y has G2 holonomy

H: torsion of unique G2 compatible connection ∇ϕ = 0 = ∇ψ

Encode geometry by a differential? cf. Dolbeault differential on complex manifold
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G2 structures: canonical G2 cohomology

Decomposition of de Rham cohomology
Reyes-Carrion:93,Fernandez–Ugarte:98

Analogue of Dolbeault operator: project d onto G2 irreps.

Define differential operator ď by

ď0 = d , ď1 = π7 ◦ d , ď2 = π1 ◦ d .

Can show τ2 = 0 ⇐⇒ ď2 = 0 cf. Dolbeault differential ∂̄

 ”integrable G2 structure”

Differential, elliptic complex

0→ Λ0(Y )
ď−→ Λ1(Y )

ď−→ Λ2
7(Y )

ď−→ Λ3
1(Y )→ 0

→ canonical G2-cohomology H∗
ď

(Y ) cf. Dolbeault cohomology H∗∂̄ (X )
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G2 instanton bundle

Goal: geometry and moduli of heterotic G2 system [(Y , ϕ), (V ,A), (TY ,Θ),H]

SUSY constrains F (A): F (A) ∧ ψ = 0 ⇐⇒ A is G2 instanton

Reyes-Carrion:93, 98,Fernandez–Ugarte:98

Canonical G2-cohomology for instanton bundle
(cf. holomorphic bundles on complex manifolds)

Recall: τ2 = 0 ⇐⇒ ď2 = 0

ď0 = d , ď1 = π7 ◦ d , ď2 = π1 ◦ d .

Generalizes to vector bundles V with instanton connection:

τ2 = 0 and F (A) ∧ ψ = 0 ⇐⇒ ď2
A = 0
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Anomaly cancellation condition

Goal: geometry and moduli of heterotic G2 system [(Y , ϕ), (V ,A), (TY ,Θ),H]

Anomaly cancellation condition

dB +
α′

4
(CS(A)− CS(Θ)) = H =

1

6
τ0 ϕ− τ1y7 ψ − τ3 .

or, Bianchi idendity

α′

4
(trF (A) ∧ F (A)− trR(Θ) ∧ R(Θ)) = dH = d

(
1

6
τ0 ϕ− τ1y7 ψ − τ3

)
.

Other conditions? Hull:86, Ivanov:10, Martelli–Sparks:10

SUSY+anomaly cancellation =⇒ EOM ⇐⇒ Θ is a G2 instanton

R(Θ) ∧ ψ = 0
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Geometry as differential

Goal: geometry and moduli of heterotic G2 system [(Y , ϕ), (V ,A), (TY ,Θ),H]:

1 (Y , ϕ) 7-manifold with integrable G2 structure

2 (V ,A), (TY ,Θ) G2 instanton bundles

3 Anomaly cancellation dB + α′

4
(CS(A)− CS(Θ)) = H = 1

6
τ0 ϕ− τ1y7 ψ − τ3

Encode constraints as nilpotency Ď2 = 0 of suitable differential Ď
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Geometry as differential

Want: Heterotic G2 system [(Y , ϕ), (V ,A), (TY ,Θ),H] ⇐⇒ Ď2 = 0

Start with

D =




dζ R −F
R dΘ 0
F 0 dA




D acts on Q-valued forms where topologically Q = T ∗Y ⊕ EndTY ⊕ EndV

dA = d + A∧ etc.

dζ has torsion −H (cf. G2 connection ∇H )

F , R linear maps

F : Ωp(Y ,T ∗Y )⊕ Ωp(Y ,End(V )) −→ Ωp+1(Y ,End(V ))⊕ Ωp+1(Y ,T ∗Y )

F(M) = (−1)p g ab Ma ∧ Fbc dx
c ,

F(α)a = (−1)p
α′

4
tr(α ∧ Fab dx

b) .
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Geometry as differential

Want: Heterotic G2 system [(Y , ϕ), (V ,A), (TY ,Θ),H] ⇐⇒ Ď2 = 0

Start with

D =




dζ R −F
R dΘ 0
F 0 dA




D acts on Q-valued forms where topologically Q = T ∗Y ⊕ EndTY ⊕ EndV

Next, project to get Ď

Ď0 = D , Ď1 = π7 ◦ D , Ď2 = π1 ◦ D .

The result follows.
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Infinitesimal moduli

Goal: geometry and moduli of heterotic G2 system [(Y , ϕ), (V ,A), (TY ,Θ),H]

Key ideas:

Reformulate heterotic system as nilpotent differential Ď X

Infinitesimal moduli counted by Q-valued canonical G2 cohomology H1
Ď(Q)

Naive infinitesimal moduli
Y : integrable G2 structure manifold V : instanton gauge bundle

δtψ (determines δtϕ): geometric moduli: H3(Y ) if H = 0
H = 0: Joyce:96, Dai, Wang, Wei:03, de Boer, Naqvi, Shomer:05,...

δtA: Vector bundle moduli: H1(Y ,End(V ))
H = 0: Sa-Earp:09,...

δtB: deformations of B-field, H = dB + α′(...)
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Infinitesimal moduli

Geometric moduli and canonical G2 cohomology

Let δtψ = iM(ψ), where Mt ∈ Λ1(Y ,T ∗Y ).

Preserve τ2 = 0: iďζMt
(ψ) = 0

Diffeomorphisms: LVψ = iďζV
(ψ) where V ∈ Λ0(Y ,T ∗Y )

=⇒ TMY = {Mt : iďζMt
(ψ) = 0}/{Mt : Mt = ďζV }

But ď2
ζ 6= 0: ζ is not an instanton

Dimension of infinitesimal geometric moduli space is not finite, in general.

Exception: G2 holonomy TMY
∼= H3

d(Y ) ∼= H1
ďζ

(Y ,TY )
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Infinitesimal moduli

Deformations of [(Y , ϕ), (V ,A)]

Want deformations that preserve F ∧ ψ = 0

=⇒ ďAα = dAαt ∧ ψ = −F ∧ iMt (ψ) = F̌(Mt)

Bianchi identity dAF = 0 =⇒ F̌(ďζ(M)) + ďA(F̌(M)) = 0

Vector bundle moduli dAαt = 0  H1(Y ,End(V ))

Geometric moduli must lie in kernel of map F̌
=⇒ TM[(Y ,ϕ),(V ,A)] = H1(Y ,End(V ))⊕ kerF̌ , kerF̌ ⊂ TMY

Not enough to prove finiteness when H 6= 0
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Infinitesimal moduli

Infinitesimal moduli and canonical G2 cohomology

Consider, for Zt = (Mt , κt , αt)
T ∈ Λ1(Y ,Q)

DZt =



dζ Mt +R(κt)−F(αt)

dΘκt +R(Mt)
dAαt + F(Mt)


 withD =




dζ R −F
R dΘ 0
F 0 dA




Constraints on moduli∗ =⇒ ĎZt = 0

∗Subtlety: B-field variations do not decouple!  antisymmetric part of matrix Mt

Diffeomorphisms and gauge symmetry =⇒ Ztriv = ĎV

=⇒ TM[(Y ,ϕ),(V ,A),(TY ,Θ),H]
∼= H1

Ď(Q) (finite dimensional)
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Infinitesimal moduli

Goal: geometry and moduli of heterotic G2 system [(Y , ϕ), (V ,A), (TY ,Θ),H]

Key ideas:

Reformulate heterotic system as nilpotent differential Ď X
Ď acts on Q-valued forms where topologically Q = T ∗Y ⊕ EndTY ⊕ EndV

Infinitesimal moduli ∼ Q-valued canonical G2 cohomology H1
Ď(Q)X
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Comparison of 3D and 4D heterotic N = 1 systems

6D Strominger–Hull system
[(X ,Ω, ω), (V ,A), (TY ,Θ),H]

Gaugino → F-term/D-term

Nilpotent differential D̄

T ∗(1,0)X ⊕ End(TX )⊕ End(V )⊕ T(1,0)X

D̄ upper triangular

Hol. Courant algebroid
 Hitchin’s generalised geometry

7D Heterotic G2 system
[(Y , ϕ), (V ,A), (TY ,Θ),H]

Gaugino → F-term

Nilpotent differential Ď
T ∗Y ⊕ End(TY )⊕ End(V )

Ď not upper triangular

——
but, see Clarke et.al.:16

6D deformation theory Atiyah:57, Kodaira, Spencer:58,60, Candelas, de la Ossa:91,

Becker, Tseng, Yau:06, Anderson,et.al:10,11,13, Fu, Yau:11, Baraglia, Hekmati:13,

Anderson, Gray, Sharpe:14, de la Ossa, Svanes:14, Garcia-Fernandez,et.al:13,15,...
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Superpotential

Alternative perspective:

Moduli space as critical locus of a superpotential on off-shell parameter space

Strategy

Dimensional reduction =⇒ 3D gravitino mass M3/2 = eKW

Remark: need Hessian K

Check δW = 0 ⇐⇒ N = 1 heterotic G2 system

Follows that δ2W ⇐⇒ equation for moduli
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Superpotential: Dimensional reduction

Fermionic part of 10D heterotic supergravity action
Bergshoeff, de Roo:89, Gurrieri, Lukas, Micu:07

→ 3D kinetic and mass terms for gravitino

Superpotential

S0,f = � 1

22
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Straightforward, but

field normalisation (correct EH term)

conventions for gravitino mass in AdS (want SUSY ∼ 0 = W = e−K/2M3/2).
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Superpotential: Dimensional reduction

To match 3D EH term decompose

g10 = en g3 ⊕ g7

Γµ(10) = e−n/2 Γµ(3) ⊗ Id⊗ σ2

Γi
(10) = Id⊗ Γi

(7) ⊗ σ1

Ψµ = en/2(ρµ ⊗ λ⊗ θ)

Ψ̄µ = (ρ̄µ ⊗ λ† ⊗ θ†σ2) ,

Then, e.g.

∫
d10X

√−g10 e
−2φ

(
− 1

24
ΨµΓνµΓijkΨνHijk

)

=

∫
d3x
√−g3 (ρ̄µΓµνρν)

[
1

24

∫
d7y
√
g7 e

−2φ+n(−iλ†Γijkλ)Hijk

]

=⇒ m ∼ 1

4

∫
∗7H ∧ ϕ · e−2φ+n .
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Superpotential: Dimensional reduction

Result:

Three mass contributions

M̃3/2 = −1

8

∫

7

e−2φ+n (dϕ ∧ ϕ− 2 ∗7 H ∧ ϕ+ 2 ∗7 f ) , (1)

Fixing conventions so that SUSY =⇒ M3/2 = 0 (with h = − 2
7 f )

M3/2 =
1

4

∫

7

e−2φ+n

(
−1

2
dϕ ∧ ϕ+ (H + hϕ) ∧ ψ

)
.

Analysing the Einstein–Hilbert term, identify K ' n =⇒

W =
1

4

∫

Y

e−2φ

(
(H + hϕ) ∧ ψ − 1

2
dϕ ∧ ϕ

)
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Superpotential: Variations and SUSY

Want to show δW = 0 ⇐⇒ N = 1 heterotic G2 system

δW =

∫

Y

e−2φ

{
−2 δφ

(
(H + hϕ) ∧ ψ − 1

2
dϕ ∧ ϕ

)

− B ∧ e2φd(e−2φ ψ) +
α′

2
[tr(δAF ∧ ψ)− tr(δΘR(Θ) ∧ ψ)] +

+(H + hϕ) ∧ δψ + δϕ ∧
(
hψ − dϕ+ dφ ∧ ϕ

)}

with δH = dB + α′

2 (tr(F δA)− tr(R(Θ) δΘ)).

Result: critical points of W ⇐⇒ heterotic G2 system with τ1 = 1
2 dφ , h = 1

3 τ0 ,

and W = 0 X

Magdalena Larfors (Uppsala University) String perspectives on manifolds with G2 structure 5 July 2019 26 / 29



Conclusions and outlook

Conclusions

Geometry and moduli of heterotic G2 system [(Y , ϕ), (V ,A), (TY ,Θ),H]

Key ideas:

Reformulate heterotic system as nilpotent differential Ď
Ď acts on Q-valued forms where topologically Q = T ∗Y ⊕ EndTY ⊕ EndV

Infinitesimal moduli ∼ Q-valued canonical G2 cohomology H1
Ď(Q)

Superpotential W s.t. δW = W = 0 ⇐⇒ N = 1 heterotic G2 system
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Conclusions and outlook

Outlook
Examples. Compute cohomologies?
Fernandez, Ivanov, Ugarte, Villacampa:11, Walpuski:13, Menet, Nordström, Sá-Earp:15,...

New perspective on Donaldson–Segal invariants?

W [Φ] = W [Φ0] + 1
2

∫
M
e−2φ0 〈X ,DX〉 ∧ ψ0 +O(X 3)

Structure of moduli space: metric, Hessian potential, singularities?

Higher order deformations: obstructions, integrability, Maurer–Cartan eq?

Decompactification and relation to SU(3) structure moduli spaces?

Magdalena Larfors (Uppsala University) String perspectives on manifolds with G2 structure 5 July 2019 28 / 29



Conclusions and outlook

Outlook
Examples. Compute cohomologies?
Fernandez, Ivanov, Ugarte, Villacampa:11, Walpuski:13, Menet, Nordström, Sá-Earp:15,...

New perspective on Donaldson–Segal invariants?

W [Φ] = W [Φ0] + 1
2

∫
M
e−2φ0 〈X ,DX〉 ∧ ψ0 +O(X 3)

Structure of moduli space: metric, Hessian potential, singularities?

Higher order deformations: obstructions, integrability, Maurer–Cartan eq?

Decompactification and relation to SU(3) structure moduli spaces?

Tack!
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