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The main goal of our work is to understand the origins of a
surprising conjecture connecting two very different subjects:
knot theory and quiver representation theory.*

*[Kucharski-Reineke-Stosic-Sulkowski '17]



The main goal of our work is to understand the origins of a
surprising conjecture connecting two very different subjects:
knot theory and quiver representation theory.*

Why is this striking?
o Two beautiful subjects, both with deep ties to physics.

o The are very different, hint of an interesting relation.

*[Kucharski-Reineke-Stosic-Sulkowski '17]



Knot theory distinguishes inequivalent embeddings K : S' < 3
by an assignment of topological invariants.

The HOMFLY-PT polynomial is defined recursively by

a Hy(57) —a™ Hi(\) = (¢ — ¢ HH (),
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A quiver @) is an oriented graph, with nodes )y connected by
arrows. Let C;; be the number of arrows i — j.

A representation M ; of dimension de QoNN is the assignment
o vector spaces C%, i = 1...|Qo|

o linear maps fo : C% — C%, o = 1...C5



A quiver @) is an oriented graph, with nodes )y connected by
arrows. Let C;; be the number of arrows i — j.

A representation M ; of dimension de QoNN is the assignment
o vector spaces C%, i = 1...|Qo|

o linear maps fo : C% — C%, o = 1...C5

A representation M ; is stable with respect to 0 QoR if d-0=0,

—

and d' -6 > 0 for every proper sub-representation d<d



Motivic DT invariants QJ]. are Betti numbers of moduli spaces of
stable representations with fixed dimension.




Motivic DT invariants QJ]. are Betti numbers of moduli spaces of
stable representations with fixed dimension.

We will focus on symmetric quivers: C;; = Cj;.
Their representation theory is completely understood*

‘Q0| d;
- 1C-d Z;
PQ(xaQ) = Z(_Q)dCdl—[ ( 2,Z2)

*[Efimov '11]



Motivic DT invariants QJ]. are Betti numbers of moduli spaces of
stable representations with fixed dimension.

We will focus on symmetric quivers: C;; = Cj;.
Their representation theory is completely understood*

‘Q0| xdi

Poz,q) = Y (~0) " U | iy

= L1 (@3 6%

Q) - . are positive integers.

*[Efimov '11]



The Knots-Quivers correspondence* conjectures that for each K
there is a quiver @, and integers a;, ¢;, such that

= Z H,(a,q) ="

r=0

PQ(F,q)

z;=x a% q%i

Qe

Example:* %/ CQ
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More sophisticated versions involve superpolynomials and knot
homologies.
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The Knots-Quivers correspondence* conjectures that for each K
there is a quiver @, and integers a;, ¢;, such that

= Z H,(a,q) ="

r=0

PQ(F,q)

z;=x a% q%i

Qe
Example:* %/ CQ

More sophisticated versions involve superpolynomials and knot
homologies.

Evidence: (2,p), (3,p) torus knots; TKQ‘pl_A'_Q, T Kop 41 twist knots.
Proved for rational links.*

*[Kucharski-Reineke-Stosic-Sulkowski '17]; *For normalized HOMFLY-PT;
* [Stosic-Wedrich '17]
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Why do knot invariants admit a quiver description?

o Given a knot K, how to get the dual quiver Q)7
o What is the meaning of nodes and arrows of Q)7
o What is the meaning of parameters a;, ¢;?

o Is there a unique quiver @ for a given knot K7?



Today we focus on the most basic statement

PR, q) = > Hy(a,q) 2"

z;=x a% q%i >0
>

Why do knot invariants admit a quiver description?

o Given a knot K, how to get the dual quiver Q)7
o What is the meaning of nodes and arrows of Q)7
o What is the meaning of parameters a;, ¢;?

o Is there a unique quiver @ for a given knot K7?

Strategy: understand connection via String Theory.



Knots in physics

HR(aqu,qzze%) = (Wg[K])gs in U(N)j Chern-Simons.*
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Knots in physics

27

N+k) = (Wg[K])gs in U(N) Chern-Simons.*

Hr(a=q",¢*=e

Without loops, Chern-Simons theory on S? is equivalent to open
topological strings with 95 = ¢ on T*S> with N A-branes.*

The 't Hooft limit corresponds to a geometric transition, leading to
closed topological strings on the resolved conifold with ¢t = Ng,.*

Knots can be reintroduced by insertion of a “knot conormal” brane
on Ly < T*S3, which transitions to a brane in the conifold Y.¥

Z2M (Y, Li) = ) Hyla,q)

top
r=0

*[Witten '89]; * [Witten '95]; * [Gopakumar-Vafa '98]; ¥ [Ooguri-Vafa '99]



2 is a brane modulus for Lx ~ R? x S': one real deformation*
complexified by U(1) holonomy

i X _ eT+’i§51A

r=e (longitude)

*[McLean '98];
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Classical phase space of flat U(1) connections on 0Lk ~ T?
is also T2. Canonical quantization yields plane waves*
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*[McLean '98];*[Elitzur-Moore-Schwimmer-Seiberg '88]



2 is a brane modulus for Lx ~ R? x S': one real deformation*
complexified by U(1) holonomy

x =X = ¢ tifan A (longitude)

Classical phase space of flat U(1) connections on 0Lk ~ T?

is also T2. Canonical quantization yields plane waves*
wn@?):e%X.Pn, P,=nh.

Therefore 2™ = ¢, (x) is a wavefunction, and so is

ZPMY, Lg) = Y, Hela,q)r(x) € H[0Lk]

r=0

*[McLean '98];*[Elitzur-Moore-Schwimmer-Seiberg '88]
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Let's consider the semiclassical limit (¢> = €9 — 1) of both sides:

28NV, L) ~ e o0

while quantized momenta n = % ~ gilogy become continuous
S

1

Z Hn(a, q> "~ @e a[—WLK(a,y) + logx -logy] + ...

S
n>0 Yy sources cs

(z: longitude, y: meridian )

fo;n(a, q, :L') <«— [Fourier] — Hn(a, q)

l l

WDisk(a, x) «— [Legendre] — WLK (a,y)

The Gromov-Witten disk potential is related by Legendre transform
to the source potential of a U(1) Chern-Simons theory on L.



Sources in U(1) Chern-Simons on Ly arise from boundaries of
holomorphic disks wrapping S ~ K.
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Sources in U(1) Chern-Simons on L arise from boundaries of
holomorphic disks wrapping S! ~ K.

Effect of sources on the geometry of flat connections:
o Without disks, the connection is described by y = 1

o Disk corrections are encoded by Legendrian constraints

exp <% - logx) =1 o exp <aWDiSk - logy) =1
o

dlogy
« Alz,y,a)=0 < CixC}

recovering the Abel-Jacobi map on the augmentation curve.*

*[Ng’'10]; [Ekholm-Etnyre-Ng-Sullivan'10]; [Aganagic-Vafa '01, '12]; [AENV'13]
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Wa
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Now WQ encodes a finite set of sources (one for each node in Q),
together with a finite set of couplings (Cj; counts arrows i — j).




Is there a notion of semiclassical limit for quivers?

om
POFg) = 3, (o™ [

We define such a limit by setting y; = limg, o g%

76 ge

Wa

JH dy; 2‘30‘ Liz(y;) + Cs; logy; log y; + log z; - log yz)

Now WQ encodes a finite set of sources (one for each node in Q),
together with a finite set of couplings (Cj; counts arrows i — j).

In sharp contrast with the much more complicated VNVLK.



To interpret this, we consider Legendrian constraints (saddles)
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defining “quiver A-polynomials”.



To interpret this, we consider Legendrian constraints (saddles)
Ai(wiy) =1—yi—zi ] Jy;" =0
J
defining “quiver A-polynomials”.

Since z; ~ x it follows that [ [y; = y. This suggests that
o each source winds once around S*!
o y; is the contribution of a source to the meridian on JL g

o Cj; are linking numbers: meridians shift longitudes
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x;,y; are holonomies on a tubular neighbourhood around the i-th
source. This enlarges the phase space to

Mg = (C* x €*)Il
therefore P%(Z, q) is indeed a wavefunction (fdz Y AT)).

Quiver A-polynomials A;(x;, %) = 0 define a Lagrangian
Lo < Mg of complex dimension |Qo|.

The role of the KQ change of variables z; = x a% ¢% is to carve
out a 1-dimensional sub-variety: A(z,y,a) =0.

It is determined by the embedding of Lx — Y, since a; encode
wrappings of basic disks around the P! in Y.




Back to holomorphic disks:

[U(l) Chern-Simons on LK] vs [topological strings on (Y, LK)]

Wi (a,y) < [Legendre] > Wpiak(a, )
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Back to holomorphic disks:

[U(l) Chern-Simons on LK] vs [topological strings on (Y, LK)]

Wi (a,y) < [Legendre] > Wpiak(a, )

I !
(dual) (z; = wa®iqdi)
l l

(finitel) > WQ (yz) <— [Legendre] — WQ(xz)

The quiver disk potential W refines Wp; by aﬁgrading

Wpisk = Z(—Nfi,j) Lig(2"a") LMOV
2,
Wo = Y (=)0, Lis(z) DT

d7j



Quiver description of the spectrum of holomorphic curves

Basic disks
o one for each node

o x; ~ xa®: wrap once around K and a; times around P!

Boundstate disks
o stable Q-rep. contains d = (...d;...) copies of basic disks
o counted by dej
o completely fixed by linking numbers C;;



Quiver description of the spectrum of holomorphic curves

Basic disks
o one for each node

o x; ~ xa®: wrap once around K and a; times around P!

Boundstate disks
o stable Q-rep. contains d = (...d;...) copies of basic disks
o counted by dej
o completely fixed by linking numbers C;;

Higher genus curves
o are counted by P?

o are generated from basic disks too, by quiver dynamics!



Back to the main question

Why do knot invariants admit a quiver description?



Back to the main question
Why do knot invariants admit a quiver description?

What is the origin of “quiver dynamics”?



Embedding open topological strings into M theory

open topological string ‘ M theory
Y Y x ST x R?
A-braneon Lg M5 on Ly x S! x R2

instanton  [3] € H3Y(Y, L) M2on g xSt
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open topological string ‘ M theory
Y Y x ST x R?
A-braneon Lg M5 on Ly x S! x R2

instanton  [3] € H3Y(Y, L) M2on g xSt

M5 engineers a 3d A/ = 2 theory T[Lx] on S! x RZ.
Its (K-theoretic) vortex partition function counts M2 branes.*

Z:g)pen(y7 LK) = Zvorteac(T[LK])

* [Dimofte-Gukov-Hollands '10]



Embedding open topological strings into M theory

open topological string ‘ M theory
Y Y x ST x R?
A-braneon Lg M5 on Ly x S! x R2

instanton  [3] € H3Y(Y, L) M2on g xSt

M5 engineers a 3d A/ = 2 theory T[Lx] on S! x RZ.
Its (K-theoretic) vortex partition function counts M2 branes.*

Z:g)pen(y7 LK) = Zvorteac(T[LK])

Think of the quiver as describing the dynamics of either:

o M2 branes with linking boundaries
o BPS vortices of T[Lx]|

* [Dimofte-Gukov-Hollands '10]



To study vortex dynamics, we need to understand T'[Lg]|:
Zyortex (T[LK]) ~ j @ eé[_WLK (a,y) +logz-log y]+...
Y

An IR description can be obtained via a 3d-3d dictionary*
o S%y: U(1) gauge symmetry

o Lig(ety?) WLK: 1-loop of a chiral with charge ), mass

o logx - logy: Fayet-lliopoulos term

‘[Dimofte—Gaiotto—Gukov'09; Fuji-Gukov-Sulkowski'13;... ]



To study vortex dynamics, we need to understand T'[Lg]|:
Zyortex (T[LK]) ~ j @ eé[_WLK (a,y) +logz-log y]+...
Y

An IR description can be obtained via a 3d-3d dictionary*
o S%y: U(1) gauge symmetry

o Lig(ety?) WLK: 1-loop of a chiral with charge ), mass

o logx - logy: Fayet-lliopoulos term

But this description is not very useful: a U(1) gauge theory with
complicated matter spectrum and interactions (Wp,,. is infinite).

‘[Dimofte—Gaiotto—Gukov'09; Fuji-Gukov-Sulkowski'13;... ]



However we have a dual description of Zorier (T[LK])

fl_[ dyz g— WQ+log z;-log y,)

specialized to z; = x a%, with WQ = > Lia(yi) + Cyjlog y; log y;.
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However we have a dual description of Zorier (T[LK])

fl_[ dyz g— WQ+log z;-log y,)

specialized to z; = x a%, with WQ = > Lia(yi) + Cyjlog y; log y;.
This defines a dual theory T'[Q]

o gauge group U(1)1 x - x U(1)|q,|
o matter: one chiral for each node, with charge 6;; under U(1);
o mixed Chern-Simons couplings Cj;

o Fayet-lliopoulos couplings z; = x a®

We also check that ZX ~!erv(T[Q]) = PQ, at finite g,.

vortex

The origins of the Knots-Quivers correspondence can be traced to
a quantum mechanics of BPS vortices in T[Q].*

*Admitting a quiver description [Hwang-Yi-Yoshida '17].



Quiver quantum mechanics from the viewpoint of M2 branes
o nodes: M2 wrapping basic holomorphic disks

o links: bifundamental light modes at M2-M2 intersections
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Quiver quantum mechanics from the viewpoint of M2 branes
o nodes: M2 wrapping basic holomorphic disks

o links: bifundamental light modes at M2-M2 intersections

Raises the question: how to make sense of disk intersections in 6d?

Answer from Knot Contact Homology: “standardize” discs, by
stretching along certain submanifolds*

o Morse function f : Lx — R with absolute minimum on the
zero-section of R? — L — S1; let Dy be its disc fiber

o Given ; with df3; L define o, = [ J{flow lines of V f}
o At infinity o} - mA +np € Hi1(0Lk,Z)

o Standardize by defining 0; = o} — nDy

*[Ekholm-Ng'18]
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Linking number (M2-M2 intersections)

We can also define a notion of self-linking:
o introduce the 4-chain C' = ( J{flow lines of JV f} in Y

o choose a “pushoff” vector field v along 03

SIk(B) = 9By - 05 —B1 - C
—

m-n=Cj;



Framing

Both .. H,(a,q)z" and Z;}7" depend on a choice of f € Z.

o In knot theory, it's an ambiguity arising in point-splitting
regularization of Chern-Simons.

o In open topological strings, it's a semiclassical ambiguity of
which cycle on 0L is the “real longitude”.
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o In open topological strings, it's a semiclassical ambiguity of
which cycle on 0L is the “real longitude”.

But its effects are well understood: e.g.
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leads to highly nontrivial changes in the disk potential
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Framing
Both .. H,(a,q)z" and Z;}7" depend on a choice of f € Z.

o In knot theory, it's an ambiguity arising in point-splitting
regularization of Chern-Simons.

o In open topological strings, it's a semiclassical ambiguity of
which cycle on 0L is the “real longitude”.

But its effects are well understood: e.g.
Al,y;0) =0 — Az -yl y;0) =0

leads to highly nontrivial changes in the disk potential

Wpisk(a, z) = Jlog ys dlogx = Z(_Nr[fi,j) Lis(z"a’)

What happens on the quiver side?
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Since x,y are meridian and longitude on L, geometrically
x — x -yl corresponds to performing f Dehn twists

Therefore we expect
o an overall shift of linking numbers C;; — Cj; + f

o no change in z; = x a%

This perfectly matches, and explains, empirical observations.*
It also implies that @ is not unique, in a way that is under control.

On T'[Q)], framing acts by overall shift of Chern-Simons couplings.*

* [Kucharski-Reineke-Stosic-Sulkowski '17]; *[Witten '03]



Conclusions

o The quiver description of knot invariants originates from the
dynamics of BPS vortices of a 3d N = 2 theory T[Q].

o The structure of T[Q)] is encoded by the quiver
o gauge group U(1); x --- x U(1)|q,|
o one charged chiral for each U(1)
o mixed Chern-Simons couplings Cj;

o Fayet-lliopoulos terms log x; = log x a®:.



o Augmentation polynomials of knots admit a decomposition
into universal blocks, the “Quiver A-polynomials” A;

o Quivers encode counts of holomorphic curves on (Y, L)

o a basic holomorphic disk on each node
o interactions encoded by linking of disk boundaries

o through quiver QM, disks generate all higher-genus curves too!



o The knot-quivers correspondence leads to a detailed dictionary
between its geometric and physical interpretations

Quiver Geometry Physics
node basic holomorphic disk 3; M2 brane / BPS vortex
edges Cj; 1k(08;, 0B;) M2-M2 intersection / CS cplg.

z,y holonomies on 0Ly ~ T2 moduli for T[L ]

Ti, Yi holonomies on (T2); < d(Lk\{0B;}) moduli for T'[Q]
a; wrappings of P! flavor charge of U(1)q
¢ self-linking slk(8;) spin SO(2) & R?

Cij > Cij+ f (Dehn twist)f overall shift of CS couplings



Thank You.
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