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The main goal of our work is to understand the origins of a
surprising conjecture connecting two very different subjects:
knot theory and quiver representation theory.♠

Why is this striking?

˝ Two beautiful subjects, both with deep ties to physics.

˝ The are very different, hint of an interesting relation.

♠[Kucharski-Reineke-Stosic-Sulkowski ’17]
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Knot theory distinguishes inequivalent embeddings K : S1 ãÑ S3

by an assignment of topological invariants.

The HOMFLY-PT polynomial is defined recursively by

a H1p
??__
q ´ a´1 H1p

??__
q “ pq ´ q´1qH1p

oo //
q,

H1p �� q “
a´ a´1

q ´ q´1
.

Example

H1

´ ¯

“
a´ a´1

q ´ q´1

`

a´2q2 ´ a´4 ` a´2q´2
˘
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A quiver Q is an oriented graph, with nodes Q0 connected by
arrows. Let Cij be the number of arrows iÑ j.

A representation M~d
of dimension ~d P Q0N is the assignment

˝ vector spaces Cdi , i “ 1 . . . |Q0|

˝ linear maps fα : Cdi Ñ Cdj , α “ 1 . . . Cij

A representation M~d
is stable with respect to ~θ P Q0R if ~d ¨ ~θ “ 0,

and ~d1 ¨ ~θ ą 0 for every proper sub-representation ~d1 ď ~d.
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Motivic DT invariants Ω~d,j
are Betti numbers of moduli spaces of

stable representations with fixed dimension.

We will focus on symmetric quivers: Cij “ Cji.
Their representation theory is completely understood♠

PQp~x, qq “
ÿ

~d

p´qq
~d¨C¨~d

|Q0|
ź

i“1

xdii
pq2; q2qdi

Ω~d,j
are positive integers.
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The Knots-Quivers correspondence♠ conjectures that for each K
there is a quiver Q, and integers ai, qi, such that

PQp~x, qq
ˇ

ˇ

ˇ

xi“x aai qqi
“

ÿ

rě0

Hrpa, qq x
r

Example:♣

More sophisticated versions involve superpolynomials and knot
homologies.

Evidence: (2,p), (3,p) torus knots; TK2|p|`2, TK2p`1 twist knots.
Proved for rational links.♦

♠[Kucharski-Reineke-Stosic-Sulkowski ’17]; ♣For normalized HOMFLY-PT;
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Today we focus on the most basic statement

PQp~x, qq
ˇ

ˇ

ˇ

xi“x aai qqi
“

ÿ

rě0

Hrpa, qq x
r

Why do knot invariants admit a quiver description?

˝ Given a knot K, how to get the dual quiver Q?

˝ What is the meaning of nodes and arrows of Q?

˝ What is the meaning of parameters ai, qi?

˝ Is there a unique quiver Q for a given knot K?

...

Strategy: understand connection via String Theory.
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Knots in physics

HRpa“q
N , q2“e

2πi
N`k q “ xWRrKsyS3 in UpNqk Chern-Simons.♠

Without loops, Chern-Simons theory on S3 is equivalent to open
topological strings with egs “ q2 on T ‹S3 with N A-branes.♣

The ’t Hooft limit corresponds to a geometric transition, leading to
closed topological strings on the resolved conifold with t “ Ngs.

♦

Knots can be reintroduced by insertion of a “knot conormal” brane
on LK Ă T ˚S3, which transitions to a brane in the conifold Y .♥

Zopentop pY, LKq “
ÿ

rě0

Hrpa, qqx
r

♠[Witten ’89];
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x is a brane modulus for LK » R2 ˆ S1: one real deformation♠

complexified by Up1q holonomy

x “ eiX “ er`i
ű

S1 A (longitude)

Classical phase space of flat Up1q connections on BLK » T 2

is also T 2. Canonical quantization yields plane waves♣

ψnpxq “ e
i
~ X¨Pn , Pn “ n ~ .

Therefore xn “ ψnpxq is a wavefunction, and so is

Zopentop pY, LKq “
ÿ

rě0

Hrpa, qqψrpxq P H rBLKs

♠[McLean ’98];
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Let’s consider the semiclassical limit (q2 “ egs Ñ 1) of both sides:

Zopentop pY,LKq „ e
1
gs
WDiskpa,xq`...

while quantized momenta n “ Pn
~ „ 1

gs
log y become continuous

ÿ

ně0

Hnpa, qqx
n „

ż

dy

y
e

1
gs
r´ĂWLK

pa, yq
looooooomooooooon

sources

` log x ¨ log y
looooomooooon

SCS

s ` . . .

Zopentop pa, q, xq Ð [Fourier] Ñ Hnpa, qq

Ó Ó

WDiskpa, xq Ð [Legendre] Ñ ĂWLK pa, yq

The Gromov-Witten disk potential is related by Legendre transform
to the source potential of a Up1q Chern-Simons theory on LK .
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Sources in U(1) Chern-Simons on LK arise from boundaries of
holomorphic disks wrapping S1 „ K.

Effect of sources on the geometry of flat connections:

˝ Without disks, the connection is described by y “ 1

˝ Disk corrections are encoded by Legendrian constraints

exp
´

BĂWLK

B log y
´ log x

¯

“ 1 Ø exp

ˆ

BWDisk

B log x
´ log y

˙

“ 1

recovering the Abel-Jacobi map on the augmentation curve.
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B log y
´ log x

¯
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ˆ

BWDisk
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´ log y

˙

“ 1
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˚
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recovering the Abel-Jacobi map on the augmentation curve.♠

♠[Ng’10]; [Ekholm-Etnyre-Ng-Sullivan’10]; [Aganagic-Vafa ’01, ’12]; [AENV’13]



Is there a notion of semiclassical limit for quivers?

PQp~x, qq “
ÿ

d1...dmě0

p´qq
~d¨C¨~d

m
ź

i“1

xdii
pq2; q2qdi

We define such a limit by setting yi “ limgsÑ0 q
di

PQp~x, qq„

ż

ź

i

dyi
yi
e

1
gs

´

ř|Q0|

i“1 Li2pyiq ` Cij log yi log yj
looooooooooooooooooooomooooooooooooooooooooon

ĂWQ

` log xi ¨ log yi

¯

` . . .

Now ĂWQ encodes a finite set of sources (one for each node in Q),
together with a finite set of couplings (Cij counts arrows iÑ j).

In sharp contrast with the much more complicated ĂWLK .
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To interpret this, we consider Legendrian constraints (saddles)

Aipxi, yiq :“ 1´ yi ´ xi
ź

j

y
Cij
j “ 0

defining “quiver A-polynomials”.

Since xi „ x it follows that
ś

yi “ y. This suggests that

˝ each source winds once around S1

˝ yi is the contribution of a source to the meridian on BLK

˝ Cij are linking numbers: meridians shift longitudes
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xi, yi are holonomies on a tubular neighbourhood around the i-th
source. This enlarges the phase space to

MQ “ pC
˚ ˆ C˚q|Q0|

therefore PQp~x, qq is indeed a wavefunction (~x
~d “ ψ~dp~xq).

Quiver A-polynomials Aipxi, ~yq “ 0 define a Lagrangian
LQ ĂMQ of complex dimension |Q0|.

The role of the KQ change of variables xi “ x aai qqi is to carve
out a 1-dimensional sub-variety: Apx, y, aq “ 0 .

It is determined by the embedding of LK ãÑ Y , since ai encode
wrappings of basic disks around the P1 in Y .
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Back to holomorphic disks:

“

U(1) Chern-Simons on LK

‰

vs
“

topological strings on pY, LKq
‰

ĂWLK pa, yq Ð [Legendre] Ñ WDiskpa, xq
Ò

(dual)

Ó

(finite!) ù ĂWQpyiq

The quiver disk potential WQ refines WDisk by ~d-grading

WDisk “
ÿ

r,i,j

p´NK
r,i,jqLi2px

raiq LMOV

WQ “
ÿ

~d,j

p´1q|
~d|`jΩ~d,j

Li2p~x
~dq DT
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Quiver description of the spectrum of holomorphic curves

Basic disks

˝ one for each node

˝ xi „ xaai : wrap once around K and ai times around P1

Boundstate disks

˝ stable Q-rep. contains ~d “ p. . . di . . . q copies of basic disks

˝ counted by Ω~d,j

˝ completely fixed by linking numbers Cij

Higher genus curves

˝ are counted by PQ

˝ are generated from basic disks too, by quiver dynamics!
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Embedding open topological strings into M theory

open topological string M theory

Y
A-brane on LK

instanton rβs P Hrel
2 pY,LKq

Y ˆ S1 ˆ R4

M5 on LK ˆ S
1 ˆ R2

M2 on β ˆ S1

M5 engineers a 3d N “ 2 theory T rLKs on S1 ˆ R2.
Its (K-theoretic) vortex partition function counts M2 branes.♠

Zopentop pY,LKq “ ZvortexpT rLKsq

Think of the quiver as describing the dynamics of either:

˝ M2 branes with linking boundaries

˝ BPS vortices of T rLKs
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To study vortex dynamics, we need to understand T rLKs:

ZvortexpT rLKsq „

ż

dy

y
e

1
gs
r´ĂWLK

pa,yq` log x¨log ys`...

An IR description can be obtained via a 3d-3d dictionary♠

˝
ş dy
y : Up1q gauge symmetry

˝ Li2pe
µyQq Ă ĂWLK : 1-loop of a chiral with charge Q, mass µ

˝ log x ¨ log y: Fayet-Iliopoulos term

But this description is not very useful: a Up1q gauge theory with

complicated matter spectrum and interactions (ĂWLK is infinite).

♠[Dimofte-Gaiotto-Gukov’09; Fuji-Gukov-Sulkowski’13;... ]
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However we have a dual description of ZvortexpT rLKsq

PQp~x, qq „

ż

ź

i

dyi
yi

e
1
gs
p´ĂWQ`log xi¨log yiq`...

specialized to xi “ x aai , with ĂWQ “
ř

i Li2pyiq ` Cij log yi log yj .

This defines a dual theory T rQs

˝ gauge group Up1q1 ˆ ¨ ¨ ¨ ˆ Up1q|Q0|

˝ matter: one chiral for each node, with charge δij under Up1qj

˝ mixed Chern-Simons couplings Cij

˝ Fayet-Iliopoulos couplings xi “ x aai

We also check that ZK´theoryvortex pT rQsq “ PQ, at finite gs.

The origins of the Knots-Quivers correspondence can be traced to
a quantum mechanics of BPS vortices in T rQs.♠
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♠Admitting a quiver description [Hwang-Yi-Yoshida ’17].



Quiver quantum mechanics from the viewpoint of M2 branes

˝ nodes: M2 wrapping basic holomorphic disks

˝ links: bifundamental light modes at M2-M2 intersections

Raises the question: how to make sense of disk intersections in 6d?

Answer from Knot Contact Homology: “standardize” discs, by
stretching along certain submanifolds♠

˝ Morse function f : LK Ñ R with absolute minimum on the
zero-section of R2 Ñ LK Ñ S1; let D0 be its disc fiber

˝ Given βi with Bβi Ă LK define σ1i “
Ť

tflow lines of ∇fu
˝ At infinity σ1i Ñ mλ` nµ P H1pBLK ,Zq

˝ Standardize by defining σi “ σ1i ´ nD0
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Ť

tflow lines of ∇fu
˝ At infinity σ1i Ñ mλ` nµ P H1pBLK ,Zq

˝ Standardize by defining σi “ σ1i ´ nD0

♠[Ekholm-Ng’18]



Linking number (M2-M2 intersections)

Cij “ lkpBβi, Bβjq “ Bβi ¨ σj “ σi ¨ Bβj

We can also define a notion of self-linking:

˝ introduce the 4-chain C “
Ť

tflow lines of J∇fu in Y

˝ choose a “pushoff” vector field ν along Bβ

slkpβq “ Bβν ¨ σβ
looomooon

m¨n”Cii

´βJν ¨ C
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Framing

Both
ř

rHrpa, qqx
r and Zopentop depend on a choice of f P Z.

˝ In knot theory, it’s an ambiguity arising in point-splitting
regularization of Chern-Simons.

˝ In open topological strings, it’s a semiclassical ambiguity of
which cycle on BLK is the “real longitude”.

But its effects are well understood: e.g.

Apx, y; aq “ 0 Ñ Apx ¨ yf , y; aq “ 0

leads to highly nontrivial changes in the disk potential

WDiskpa, xq “

ż

log y‹ d log x “
ÿ

p´NK
r,i,jqLi2px

raiq

What happens on the quiver side?
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Since x, y are meridian and longitude on BLK , geometrically
xÑ x ¨ yf corresponds to performing f Dehn twists

Therefore we expect

˝ an overall shift of linking numbers Cij Ñ Cij ` f

˝ no change in xi “ x aai

This perfectly matches, and explains, empirical observations.♠

It also implies that Q is not unique, in a way that is under control.

On T rQs, framing acts by overall shift of Chern-Simons couplings.♣
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xÑ x ¨ yf corresponds to performing f Dehn twists

Therefore we expect

˝ an overall shift of linking numbers Cij Ñ Cij ` f

˝ no change in xi “ x aai

This perfectly matches, and explains, empirical observations.♠

It also implies that Q is not unique, in a way that is under control.

On T rQs, framing acts by overall shift of Chern-Simons couplings.♣

♠[Kucharski-Reineke-Stosic-Sulkowski ’17]; ♣[Witten ’03]



Conclusions

˝ The quiver description of knot invariants originates from the
dynamics of BPS vortices of a 3d N “ 2 theory T rQs.

˝ The structure of T rQs is encoded by the quiver

˝ gauge group Up1q1 ˆ ¨ ¨ ¨ ˆ Up1q|Q0|

˝ one charged chiral for each Up1q

˝ mixed Chern-Simons couplings Cij

˝ Fayet-Iliopoulos terms log xi “ log x aai .



˝ Augmentation polynomials of knots admit a decomposition
into universal blocks, the “Quiver A-polynomials” Ai

˝ Quivers encode counts of holomorphic curves on pY,LKq

˝ a basic holomorphic disk on each node

˝ interactions encoded by linking of disk boundaries

˝ through quiver QM, disks generate all higher-genus curves too!



˝ The knot-quivers correspondence leads to a detailed dictionary
between its geometric and physical interpretations

Quiver Geometry Physics
node i basic holomorphic disk βi M2 brane / BPS vortex

edges Cij lkpBβi, Bβjq M2-M2 intersection / CS cplg.

x, y holonomies on BLK » T 2 moduli for T rLK s

xi, yi holonomies on pT 2qi Ă BpLKztBβjuq moduli for T rQs

ai wrappings of P1 flavor charge of Up1qa

qi self-linking slkpβiq spin SOp2q ýR2

Cij Ñ Cij ` f (Dehn twist)f overall shift of CS couplings



Thank You.
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