

### Magnificent Four with Colors

#### NIKITA NEKRASOV

Uppsala, July 3, 2019

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ



#### Magnificent Four with Colors, and Beyond (?) Eleven Dimensions

Nikita Nekrasov

Simons Center for Geometry and Physics

Strings-Math'19 Uppsala July 3

 $\diamond \diamond \diamond$ 

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $\Diamond \Diamond \Diamond \Diamond \Diamond$ 

# A popular approach to quantum gravity

is to approximate the space-time geometry by some discrete structure

 $\diamond \diamond \diamond \diamond$ 



# A popular approach to quantum gravity

is to approximate the space-time geometry by some discrete structure

Then develop tools for summing over these discrete structures

 $\diamond \diamond \diamond \diamond$ 

 $\Diamond \Diamond \Diamond \Diamond \Diamond$ 

### A popular approach to quantum gravity

is to approximate the space-time geometry by some discrete structure

Then develop tools for summing over these discrete structures

Tuning the parameters so as to get, in some limit

Smooth geometries





# To some extent

#### two dimensional quantum gravity

is successfully solved in this fashion

using matrix models

$$\log \int_{N \times N} dM \, e^{-N \operatorname{tr} V(M)} \sim \sum_{\text{fat graphs} \leftrightarrow \text{triangulated Riemann surfaces}}$$



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ



### To some extent

#### two dimensional quantum gravity

is successfully solved in this fashion

using matrix models

$$\log \int_{N \times N} dM \, e^{-N \operatorname{tr} V(M)} \sim \sum_{g=0}^{\infty} N^{2-2g} \sum_{\text{genus } g \text{ Riemann surfaces}}$$



・ロト・日本・モト・モート ヨー うへで



# Going up in dimension

proves difficult





# Going up in dimension

proves difficult - the obvious generalization of a matrix model

is the so-called tensor theory

 $M_{ij} \longrightarrow \Phi_{ijk}$ 

There is no analogue of genus expansion for general three-manifolds

 $\Diamond \Diamond \Diamond \Diamond$ 



# Going up in dimension

proves difficult - the obvious generalization of a matrix model

is the so-called tensor theory

 $M_{ij} \longrightarrow \Phi_{ijk}$ 

There is no analogue of genus expansion for general three-manifolds

However an interesting large N scaling has been recently found

In the context of the SYK model,  $g \mapsto$  Gurau index

 $\Diamond \Diamond \Diamond \Diamond$ 



#### Random three dimensional geometries





I do not claim to quantize three dimensional Einstein gravity

 $\diamond \diamond \diamond \diamond$ 



Models of random three dimensional geometries, from which

we may learn about eleven dimensional super-gravity/M-theory

 $\diamond \diamond \diamond \diamond$ 



Models of random three dimensional geometries, from which

we may learn about eleven dimensional super-gravity/M-theory

and beyond

 $\diamond \diamond \diamond \diamond$ 



One way to generate a *d*-dimensional random geometry

Is from some local growth model in d + 1-dimensions

 $\diamond \diamond \diamond \diamond$ 



For example, start with the simplest "mathematical" problem



・ロト・日本・モト・モート ヨー うへで



For example, start with the simplest problem: counting natural numbers

 $1,\ 2,\ 3,\ldots$ 

 $\diamond \diamond \diamond \diamond$ 



For example, start with the simplest problem: accounting

 $1, 2, 3, \ldots$ 







#### Accounting for objects without structure

 $1, 2, 3, \ldots$ 







Now add the simplest structure: partitions of integers

 $(1); (2), (1,1); (3), (2,1), (1,1,1); \dots$ 

 $\diamond \diamond \diamond \diamond$ 



Now add the simplest structure: partitions of integers

$$(1); \qquad (2), (1,1); \qquad (3), (2,1), (1,1,1); \ldots$$







The structure: partitions of integers as bound states

$$(1); \qquad (2), (1,1); \qquad (3), (2,1), (1,1,1); \ldots$$







Gardening and bricks





Partition (1) made of brick





Gardening and bricks



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ



Gardening and bricks





Gardening and bricks





Gardening and bricks





Partition (2) made of bricks





Gardening and bricks



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ



Gardening and bricks





Gardening and bricks



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで


Gardening and bricks





Partition (2,1) made of bricks





Partition (3, 1) made of bricks





The probability of a given partition, e.g. (3,1), is determined by the equality



of the chances of jumps from one partition e.g. from (3,1) to another, e.g. (3,2) or (4,1), or (3,1,1)

 $\diamond \diamond \diamond \diamond$ 

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <



# Possibilities of growth: Young graph



 $\diamond \diamond \diamond \diamond$ 

イロト イポト イヨト イヨト

э



Thus the probability  $p_{\lambda}$  of a given partition  $\lambda$ 

is proportional to the # of ways it can be built out of the nothing

times the # of ways it can be reduced to nothing

 $\diamond \diamond \diamond \diamond$ 



Thus the probability  $p_{\lambda}$  of a given partition  $\lambda$ 

is proportional to the # of ways it can be built out of the nothing

times the # of ways it can be reduced to nothing: quantum bricks

 $\diamond \diamond \diamond \diamond$ 



#### Plancherel measure: symmetry factors

One can calculate this to be equal to

$$p_{\lambda} = \left(rac{\dim(\lambda)}{|\lambda|!}
ight)^2 \Lambda^{2|\lambda|} e^{-\Lambda^2}$$

$$= e^{-\Lambda^2} \left( \prod_{\Box \in \lambda} \frac{\Lambda}{\mathrm{hook} - \mathrm{length of } \Box} \right)^2$$

For example, 
$$p_{3,1} = \frac{1}{1^2 2^2 4^2 1^2} = \frac{1}{64}$$



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ



# Supersymmetric gauge theory

Remarkably,  $p_{\lambda}$  is the simplest example

of an instanton measure

$$p_{\lambda} = (\mathrm{sDet}\Delta_{\mathcal{A}_{\lambda}})^{-\frac{1}{2}}$$

i.e. the one-loop (exact) contribution of an instanton  $A = A_{\lambda}$ 

in  $\mathcal{N} = 2$  supersymmetric gauge theory

 $\diamond \diamond \diamond \diamond$ 

・ロト・日本・モート モー うへぐ



Consider  $\mathcal{N} = 2$  supersymmetric gauge theory in four dimensions

The fields of a vector multiplet are  $A_m$ , m = 1, 2, 3, 4;  $\lambda_{\alpha i}$ ,  $\alpha = 1, 2$  and i = 1, 2;  $\phi, \bar{\phi}$ 

with the supersymmetry transformations, schematically

$$\begin{split} \delta A &\sim \lambda + \bar{\lambda} \,, \qquad \delta \phi \sim \lambda \,, \qquad \delta \bar{\phi} \sim \bar{\lambda} \\ \delta (\lambda, \bar{\lambda}) &\sim (F^+ + D_A \phi, F^- + D_A \bar{\phi}) + [\phi, \bar{\phi}] \end{split}$$

 $\diamond \diamond \diamond \diamond$ 

#### $\diamond \diamond \diamond \diamond$

# Supersymmetric gauge theory and random partitions

Supersymmetric partition function of the theory can be computed exactly

by localizing on the  $\delta$ -invariant field configurations, i.e.  $F_A^+ = 0$ 

$$Z = \sum_{k} \Lambda^{2Nk} \int_{\mathcal{M}_{k}^{+}} \text{instanton measure}$$

of some effective measure, including the regularization factors

 $\diamond \diamond \diamond \diamond$ 



The integral over the moduli space can be further simplified by

by deforming the supersymmetry using the rotational symmetry of  $\mathbb{R}^4$ 

$$Z = \sum_k \Lambda^{2Nk} \sum_{\lambda, \ |\lambda|=k} p_{\lambda}$$

The deformed path integral is computed by exact saddle point analysis with  $\lambda$  enumerating the saddle points

 $\diamond \diamond \diamond \diamond$ 

 $\diamond \diamond \diamond \diamond$ 

#### Supersymmetric gauge theory and random partitions

Generic rotation of 
$$\mathbb{R}^4$$
:  $g_{rot} = \exp \begin{pmatrix} 0 & \varepsilon_1 & 0 & 0 \\ -\varepsilon_1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \varepsilon_2 \\ 0 & 0 & -\varepsilon_2 & 0 \end{pmatrix}$ 

(

$$Z = \sum_{k} \Lambda^{2Nk} \sum_{\lambda, |\lambda|=k} p_{\lambda}(\varepsilon_1, \varepsilon_2)$$

The deformed path integral is computed by exact saddle point Exact saddle point approximation

for U(N) gauge theory:  $\lambda = an N$ -tuple of partitions  $\lambda^{(1)}, \ldots, \lambda^{(N)}$ 

 $\diamond \diamond \diamond \diamond$ 



In this way supersymmetric gauge theory becomes a model of





In this way supersymmetric gauge theory becomes a model of





In this way supersymmetric gauge theory becomes a model of





In this way supersymmetric gauge theory becomes a model of





In this way supersymmetric gauge theory becomes a model of





In this way supersymmetric gauge theory becomes a model of random partitions = random piecewise linear geometries



$$p_{\lambda}(\varepsilon_1,\varepsilon_2) = \exp \int \int dx_1 dx_2 f''(x_1) f''(x_2) K(x_1 - x_2;\varepsilon_1,\varepsilon_2)$$

・ロト ・ 一下・ ・ ヨト ・ ・

 $\Diamond \Diamond \Diamond \Diamond$ 

#### **Emergent spacetime geometry**

In the limit  $\varepsilon_1, \varepsilon_2 \rightarrow 0$  (back to flat space supersymmetry)

The sum over random partitions is dominated by the so-called limit shape





#### Higher dimensional gauge theories

The analogous supersymmetric partition functions

can be defined for d = 4, 5, 6, 7, 8, 9 dimensional gauge theories

using embedding in string theory for d > 4

 $\diamond \diamond \diamond \diamond$ 



#### **Extra dimension**

These computations can be used to test some

of the most outstanding predictions of mid-90s, e.g. that

sum over the D0-branes = lift to one higher dimension

 $\diamond \diamond \diamond \diamond$ 

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ



E.g. the max susy gauge theory in 4 + 1 dim's

$$Z_{4+1}^{N=1} \ = \ {\mathsf{Tr}}_{{\mathcal H}_{{\mathbb R}^4}} \, g_{
m rot} \; g_{{
m R-sym}} \; g_{
m flavor} \, (-1)^F$$

$$= \exp \sum_{k=1}^{\infty} \frac{1}{k} F_5(q_1^k, q_2^k, \mu^k, p^k)$$

Free energy 
$$F_5(q_1, q_2, \mu, p) = \frac{p}{1-p} \frac{(1-\mu q_1)(1-\mu q_2)}{\mu(1-q_1)(1-q_2)}$$

 $q_1 = e^{i\beta\varepsilon_1}, \ q_2 = e^{i\beta\varepsilon_2}, \ \beta\varepsilon_1, \ \beta\varepsilon_2$  are the angles of the spatial  $\mathbb{R}^4$  rotation  $\mu = e^{i\beta m}, \ m$  is the mass of the adjoint hypermultiplet,  $\beta$  is the circumference of the temporal circle p is the fugacity for the # of instantons = # of D0 branes bound to a D4 brane in the *IIA* string picture

 $\langle \rangle \langle \rangle \langle \rangle$ 



# **Extra dimension**

Remarkably,

$$Z_{4+1}^{N=1}(q_1, q_2, \mu, p) = \exp \sum_{k=1}^{\infty} \frac{1}{k} F_5\left( (\cdot)^k \right) =$$

= Partition function of a minimal d = 6,  $\mathcal{N} = (0, 2)$  multiplet On space-time  $\mathbb{R}^4 \widetilde{\times} \mathbb{T}^2$ 

$$p = e^{2\pi i \tau}$$
,  $\tau =$ complex modulus of the  $\mathbb{T}^2$ 

 $\diamond \diamond \diamond \diamond$ 

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ



#### **Extra dimension**

Remarkably,

$$Z_{4+1}^{N=1}(q_1, q_2, \mu, p) = \exp \sum_{k=1}^{\infty} \frac{1}{k} F_5\left( (\cdot)^k \right) =$$

= Partition function of a minimal d = 6,  $\mathcal{N} = (0,2)$  multiplet On space-time  $\mathbb{R}^4 \widetilde{\times} \mathbb{T}^2$ 

$$p = e^{2\pi i \tau}$$
,  $\tau =$ complex modulus of the  $\mathbb{T}^2$ 

In agreement with D4 brane = M5 brane on  $S^1$ 

 $\diamond \diamond \diamond \diamond$ 

# $\diamond \diamond \diamond \diamond$

**Even higher dimensions:** 6 + 1SYM in 6 + 1 dim's  $- Tr(-1)^F g$  is expressed as a sum over plane partitions



#### **Even higher dimensions:** 6+1

SYM in 6+1 dim's – Tr $(-1)^Fg$  is expressed as a sum over plane partitions

$$g_{\rm rot} = \begin{pmatrix} R_1 & 0 & 0\\ 0 & R_2 & 0\\ 0 & 0 & R_3 \end{pmatrix}, R_i = \exp i\beta \begin{pmatrix} 0 & \varepsilon_i\\ -\varepsilon_i & 0 \end{pmatrix}$$



 $\diamond \diamond \diamond \diamond$ 



# **Even higher dimensions:** 6+1

SYM in 6 + 1 dim's – Tr $(-1)^F g$  is expressed as a sum over plane partitions

$$Z_{6+1}^{N=1} = \exp \sum_{k=1}^{\infty} rac{1}{k} F_7(q_1^k, q_2^k, q_3^k, p^k)$$

Again, p counts instantons = D0 branes bound to a D6



# **Even more higher dimensions:** $6 + 1 \rightarrow 10 + 1$

It turns out, that the supersymmetric free energy of plane partitions

$$F_{7}(q_{1}, q_{2}, q_{3}, p) = \frac{\sum_{a=1}^{5} (Q_{a} - Q_{a}^{-1})}{\prod_{a=1}^{5} \left(Q_{a}^{\frac{1}{2}} - Q_{a}^{-\frac{1}{2}}\right)}$$

$$Q_1 = q_1, Q_2 = q_2, Q_3 = q_3, Q_4 = p(q_1q_2q_3)^{-\frac{1}{2}}, Q_5 = p^{-1}(q_1q_2q_3)^{-\frac{1}{2}}$$



S(3)-symmetry enhanced to S(5) symmetry Twisted Witten index of 11d supergravity! Plane partitions = 3d Young diagrams know about (super)gravity in 10 + 1 dimensions! In agreement with:  $D6 \rightarrow Taub - Nut \approx \mathbb{R}^4$ ,  $IIA \rightarrow M$ -theory

<ロト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

 $\Diamond \Diamond \Diamond \Diamond$ 

#### From 2d and 3d to 4d Young diagrams

Eight dimensional analogue of the ADHM construction

Three complex Hermitian vector spaces are involved: N, M, K

Matrices:  $B_a: K \to K, a = 1, \dots, 4, I: N \to K, \Upsilon: M \to K$ 

 $\diamond \diamond \diamond \diamond$ 



#### Eight dimensional analogue of the ADHM construction

Three complex Hermitian vector spaces are involved: N, M, K

Dimensions:  $\dim K = k$ ,  $\dim N = \dim M = n$ Matrices:  $B_a : K \to K$ ,  $a = 1, \dots, 4$ ,  $I : N \to K$ ,  $\Upsilon : M \to K$  $\Upsilon$  is a fermion

#### Equations:

$$\begin{split} [B_1,B_2] + [B_3,B_4]^\dagger &= 0 \qquad \text{and cyclic permutations} \\ \sum_{a=1}^4 [B_a,B_a^\dagger] + II^\dagger &= r \cdot \mathbf{1}_K \end{split}$$



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <



#### Eight dimensional analogue of the ADHM construction

Three complex Hermitian vector spaces are involved: N, M, K

Matrices:  $B_a: K \to K, a = 1, \dots, 4, I: N \to K, \Upsilon: M \to K$ 

Symmetry:

$$(B_a) \mapsto (g_{a\dot{b}}B_b) , g \in SU(4)$$
  
 $\Upsilon \mapsto \Upsilon \mathbf{b}^{-1} , \mathbf{b} \in U(M)$   
 $I \mapsto I \mathbf{a}^{-1} , \mathbf{a} \in U(N)$ 





#### **Eight dimensional ADHM quantum mechanics**

Make matrices time-dependent

Supersymmetric Lagrangian

Equations squared = potential term

 $\diamond \diamond \diamond \diamond$ 

 $\Diamond \Diamond \Diamond \Diamond$ 

#### From 2d and 3d to 4d Young diagrams

Twisted Witten index = a count of solid n-colored partitions

= 4d Young diagrams

How to visualize them?

 $\diamond \diamond \diamond \diamond$ 



# From 2d and 3d to 4d Young diagrams How to visualize 4d Young diagrams?

Use the projection from  $\mathbb{R}^4 \to \mathbb{R}^3$  along the (1,1,1,1) axis



 $\diamond \diamond \diamond \diamond$ 

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()



# From 2d and 3d to 4d Young diagrams

#### How to visualize 4d Young diagrams?

Just like the projection from  $\mathbb{R}^3 \to \mathbb{R}^2$  along the (1,1,1) axis






# From 2d and 3d to 4d Young diagrams

#### How to visualize 4d Young diagrams?

The projection from  $\mathbb{R}^3 \to \mathbb{R}^2$  gives the tesselation of  $\mathbb{R}^2$ 



By rombi of three orientations

 $\diamond \diamond \diamond \diamond$ 



# From 2d and 3d to 4d Young diagrams

#### How to visualize 4d Young diagrams?

The projection from  $\mathbb{R}^3 \to \mathbb{R}^2$  gives the tesselation of  $\mathbb{R}^2$ 



By rombi of three orientations

 $\diamond \diamond \diamond \diamond$ 



# From 2d and 3d to 4d Young diagrams

Projection from  $\mathbb{R}^4 \to \mathbb{R}^3$  along (1, 1, 1, 1)

Get the tesselation of  $\mathbb{R}^3$  by squashed cubes









# Random 3d geometries!





◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



# Our account of solid partitions = 4d Young diagrams

Previous famous attempts due to P. MacMahon, 1916



$$Z_{2}(q) = \prod_{n=1}^{\infty} \frac{1}{1-q^{n}}, \text{ L. Euler}$$

$$Z_{3}(q) = \prod_{n=1}^{\infty} \frac{1}{(1-q^{n})^{n}}, \text{ MacMahon}$$

$$Z_{4}(q) = \prod_{n=1}^{\infty} \frac{1}{(1-q^{n})^{n(n+1)/2}}$$
Gives 1.4.10.26 E0.141 217554.4

Gives  $1, 4, 10, 26, 59, 141, \dots, 217554, 424148 \dots$ Instead of  $1, 4, 10, 26, 59, 140, \dots, 214071, 416849 \dots$ 

 $\diamond \diamond \diamond \diamond$ 

 $\Diamond \Diamond \Diamond \Diamond$ 

# Supersymmetric count of solid partitions

Four dimensional Young diagrams

as instanton configurations in

super-Yang-Mills theory on  $\mathbb{R}^8 \times S^1$ 

 $\diamond \diamond \diamond \diamond$ 

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <



$$Z_{8+1}^{U(n|n)}(\underline{q}; \underline{\mathbf{a}} | \underline{\mathbf{b}}; p) =$$

$$= \sum_{k=0}^{\infty} p^{k} \operatorname{Tr}_{\mathcal{H}_{k}} \left( (-1)^{F} \mathbf{b}^{R_{\Upsilon}} \mathbf{a}^{R_{I}} \prod_{\alpha=1}^{4} q_{\alpha}^{R_{2\alpha-1,2\alpha}} \right)$$

$$\underline{q} = \operatorname{diag} \left( q_{1}, q_{2}, q_{3}, q_{4} \right), \quad \prod_{a=1}^{4} q_{a} = 1,$$

parameters of an  $SU(4) \subset Spin(8)$  rotation of  $\mathbb{R}^8$ 

 $\underline{\mathbf{b}} \in U(1)^n \subset U(M), \ \underline{\mathbf{a}} \in U(1)^n \subset U(N),$ 

parameters of constant gauge transformations/separations of D8-branes

 $\diamond \diamond \diamond \diamond$ 

$$\diamond \diamond \diamond \diamond$$

$$Z_{8+1}^{U(n|n)}(\underline{q}; \underline{\mathbf{a}} \mid \underline{\mathbf{b}}; p) =$$

$$= \sum_{k=0}^{\infty} p^{k} \operatorname{Tr}_{\mathcal{H}_{k}} \left( (-1)^{F} \mathbf{b}^{R_{\Upsilon}} \mathbf{a}^{R_{I}} \prod_{\alpha=1}^{4} q_{\alpha}^{R_{2\alpha-1,2\alpha}} \right)$$

$$\underline{q} = \operatorname{diag} \left( q_{1}, q_{2}, q_{3}, q_{4} \right), \quad \prod_{a=1}^{4} q_{a} = 1,$$

parameters of an  $SU(4) \subset Spin(8)$  rotation of  $\mathbb{R}^8$ 

 $\underline{\mathbf{b}} \in U(1)^n \subset U(M), \ \underline{\mathbf{a}} \in U(1)^n \subset U(N),$ 

parameters of constant gauge transformations/separations of D8-branes = eigenvalues of complexified U(n|n) holonomy on  $S^1$ 

 $\diamond \diamond \diamond \diamond$ 

(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))((1))

#### $\diamond \diamond \diamond \diamond$ **Magnificent Four Partition Function**

from fixed points

$$Z_{8+1}^{U(n|n)}(\underline{q}; \underline{\mathbf{a}} | \underline{\mathbf{b}}; p) =$$

$$= \sum_{k=0}^{\infty} \left(\frac{p}{\sqrt{\mu}}\right)^{k} \sum_{\rho, |\rho|=k} \operatorname{Res}_{x_{l}=\text{lexordered }q-\text{contents of }\rho} \mathbf{m}_{\rho}(x)$$

$$\mu = \prod_{a=1}^{n} \frac{\mathbf{b}_{a}}{\mathbf{a}_{a}}$$
measure  $\mu_{\rho}(x)$ 

$$\mathbf{m}_{\rho}(x) = \prod_{1 \le l, J \le k}^{\prime} E_{q}(x_{l}/x_{J}) \prod_{l=1}^{k} \prod_{a=1}^{n} \frac{x_{l} - \mathbf{b}_{a}}{x_{l} - \mathbf{a}_{a}}$$

$$E_{q}(x) = \frac{q_{4}(x - q_{1}q_{2})(x - q_{1}q_{3})(x - q_{2}q_{3})}{(x - q_{1})(x - q_{2})(x - q_{3})(x - q_{4})},$$

from fixed points

 $Z_{8+1}^{U(n|n)}(\underline{q};\underline{\mathbf{a}} | \underline{\mathbf{b}};p) =$ 

 $= \sum_{k=0}^{\infty} \left(\frac{p}{\sqrt{\mu}}\right)^k \sum_{\rho, |\rho|=k} \operatorname{Res}_{x_l = \operatorname{lexordered} q-\operatorname{contents} \operatorname{of} \rho} \mathbf{m}_{\rho}(x)$ 

one-loop induced measure  $\mathbf{m}_{\rho}(x)$ 

$$\mathbf{m}_{\rho}(x) = \prod_{1 \leq I, J \leq k}^{\prime} E_{q}(x_{I}/x_{J}) \prod_{I=1}^{k} \prod_{a=1}^{n} \frac{x_{I} - \mathbf{b}_{a}}{x_{I} - \mathbf{a}_{a}} \operatorname{contribution of} \mathbf{f}_{a}$$

 $E_q(x) = \frac{q_4(x-q_1q_2)(x-q_1q_3)(x-q_2q_3)}{(x-q_1)(x-q_2)(x-q_3)(x-q_4)} \quad \text{contributions of equations}$ 



Conjecture

$$Z_{8+1}^{U(n|n)}(\underline{q};\underline{\mathbf{a}} \,|\, \underline{\mathbf{b}};p) = \exp \sum_{k=1}^{\infty} \frac{1}{k} F_{9}(\underline{q}^{k},\mu^{k},p^{k})$$

 $\diamond \diamond \diamond \diamond$ 



$$Z_{8+1}^{U(n|n)}(\underline{q};\underline{\mathbf{a}} \,|\, \underline{\mathbf{b}};p) = \exp \sum_{k=1}^{\infty} \frac{1}{k} F_{9}(\underline{q}^{k},\mu^{k},p^{k})$$

Free energy 
$$F_9(\underline{q}, \mu, p) = \frac{[q_{12}][q_{13}][q_{23}][\mu]}{[q_1][q_2][q_3][q_4][\sqrt{\mu p}][\sqrt{\mu/p}]}$$

$$[\xi] := \xi^{\frac{1}{2}} - \xi^{-\frac{1}{2}}$$

Our formula has been checked for up to n = 16 instantons with N. Piazzalunga

R. Poghossian --up to n=17

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Works in all 1, 4, 10, 26, 59, 140, ..., 214071, ... cases!

 $\diamond \diamond \diamond \diamond$ 



For special values of  $\boldsymbol{\mu}$  our partition function

Reduces to the previously known lower dimensional ones In particular, for if  $\mathbf{b}_a = q_4 \mathbf{a}_a$  for all  $a = 1, \dots, n$ we get the partition function of U(n) theory in 6 + 1 dimensions which matches sugra on  $\mathbb{R}^4 / \mathbb{Z}_n \times \mathbb{R}^6 \times S^1$ 

 $\diamond \diamond \diamond \diamond$ 

 $\wedge \wedge \wedge$ 

For general values of  $\boldsymbol{\mu}$  our partition function

Coincides with that of some system of free bosons and fermions Which contains (cohomologically) 11d linearized supegravity What is its minimal number of spacetime dimensions?

 $\diamond \diamond \diamond \diamond$ 

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <



## Beyond eleven dimensions ?!?!

Non-Poincare supersymmetry?

 $\diamond \diamond \diamond \diamond$ 



## Beyond eleven dimensions ?!?!

Non-Poincare supersymmetry in 12+1 dimensions?

 $\diamond \diamond \diamond \diamond$ 



# THANK YOU



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○