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We study indices in SUSY theorieg in dim=2-+|

B 5

A lot of important work on thece in recent yearg, in
particular by D.Gaiotto, TDimofte, .. and their collaborators.



W qudg indi'o‘egy in QUQY theorieg in dim=2-+

. Indices may be computed in the IR, that ig, when the gpace B | -
ig very large. In that limit, we can replace the original theory by




We study theoriee with 8 supercharges, and for them X wantg to
be a hypertahler manifold.

B

In reality, a singular algebraic eymplectic variety.



In alg geom, nice moduli gpace of mape B —-> X, namely
quasimaps (=vortex golutiong), exist for SUSY gauge theorieg,
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It is a very interesting geometric and phygical problem to figure
out what ig the right geometry for more general theorieg.



SUSY indiceg are defined in algebraic geometry ag indiceg of
virtual Dirac operator on the moduli ¢pace of maps:
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In reality, the Euler characterictic of the virtual A-genug, which may
be defined ag an element of KiModuli) in very favorable
circumetances (see above)



Indices for .
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are graded by - '

- the aetion of AutlX) x Aut(B) ey s

- the topology of the map, recorded by Z |
In other word, they are functiong on AuttX) x Aut(B) timeg

. Z = ?{C(X)®<E




The surface B can have marked pointe
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where one can put ingertiong (line operators in dim=2+1). The
apace of poseible ingertions ie ag big ag the K-theory of X.If there
are h marked pointg, the indiceg are functiong of z and equivariant

variablee with valueg in K (X >® h



 Thig data forme K-theoretic analog of CohFT e
P Bl s '

With {‘he extra feature that the metric depends on z (buf ot o e
 automorphierne g of the 2-pointed aphere): ‘




Reconstruction theorems of Givental-Teleman kind are expected to
hold in all examples of interest. [n other wordg, one should be able
to congtruct indiceg directly ag virtual vector bundleg on the moduli
gpaces of pointed curveg starting from the data that will be
digcusged below.

[hig K-thereoretic-F T really i the complete degcription of indices.
[t may be taken ag a gubgtitute to curve-counting when no curve-
counting may be et up with exieting technology.



A key phenomenon in the field ig that of 3-dimengional mirror
symmetry. [t goeg back 1o [Intrilligator-Seiberg] and predicte
certain pairg of KthFT'e to be exactly equal with:

- the exchange of degree ak.a. Kahler variables z and the
equivariant variableg a in a maximal torug A of AutX,w)

. 3 auitable identification of K X)[[2]) with Kegid X Ja]]

[hig is very powertul and aleo omething we can actually prove
when both curve counte are defined within present technology.



For ingtance, equivariant K-theoretic countg in algebraic geometry
are group charactere (in particular Laurent polynomiale), whenever
compact and rational functiong otherwige (with location of the
poles under excellent control).

Thig lendg support to the bagie expectation (known in many very
challenging cageg) that the indices are aleo rational functiong of
the Cahler variables z whenever B is compact. Thig includes e.q.
the famoug rationality in the boxeounting variable in the DT theory



Rational funetiong are very gimple and therefore not go eagy to
characterize. To get a better grip on the thingg, we will introduce
progressively more and more complicated, and henee more rigid,
functions and structures.



Ag a firet step, we will take B which is noncompact. The simplest
auch geometry ie the whole complex plane. We work equivariantly
with regpect to rotation q\in Aut(B), which ie analogous to the
definition of Nekragou'e function in Sd.
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In math, thie moduli space is defined ag an open set ingide maps
from O [ 10 X for which f ie nongingular at infinity (cimilarly to
the uge of Uhlenbeck compactification in Nekragov theory).



‘One name for thege indiceg are verfex functione. They take an
arqument in K(X) via the evaluation fleo) \in X.
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They can fake a further ingertion at O, in which cage they
look like operatorg in KIX)



These vertex functione are not rational functions. Instead, they
solve g-difference equations in all other arguments with rational

coefficients. (The matrices of thege equationg come from indiceg on 1, which gort
of explaing why they are rational. The actual math argument goeg in the oppogite

direeﬁon.)

Vertex functiong are faney generalization of q-hypergeometric
functiong, and become exactly g-hypergeometric functions for the
simpleet nontrivial X.






The XIX cenfurg oharm of the o hgpergeomefne function ghould
. not be mlgleadmg, in genera| fhege are not ag huggab[e

For ingtance, for X=HilblC 2.n) the verfex function i¢ the I-leg
 verfex in K-theoretic Donaldeon-Thomag theory (whence the
name). Vertex functiong for X=HilblA_r,n) contain 2- and 3-leg
 Vertices fo’rK—-fheoreﬁo DT counte. ‘ .



Remarkably, the g-difference equationg are known in gome
generality {in terme of certain powerful geometric repregentation
theory [O,, Smirnov-O.). If the g-difference equation in just one of
the variableg ig known, thie congtraing them all esgentially uniquely.

E.q, for X=Hilb(C 2,n) the equation ig the g-difference vergion of
the quantum differential equation of [O.-Pandharipande]. [t ig
what people may call the dynamical equation for quantum double
loops into glll) (= g-difference vergion of the algebra from
Davide's lecture)



For the 3d mirror ggmmefrg,‘ X=HilblC 2.n) is celf-mirror, 20
the equationg in z and a \in SL(2) should be the eame. True, but
very nontrivial to ee, g very indirect argument ie needed.

The begt handle we have on thege equationg goes through the
identitication of their monodromy.



The monodromy of a g-difference equation ig the
comparigon of the fundamental golution near z=0, e.q.
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with the golution of the eame equation near z=co
(which ig given by the vertex functiong of the flop of X). Given

by a matrix of elliptic functions in z, a, and \hbar



Abstractly, the monodromy ie a transcendental map between two
algebraic varieties, like the exponential map in Lie theory. [n our
cage, under excellent control due to the following physical/
geometric reagon ...



Recall that for compact B, the 3d mirror symmetry equates counts
of maps for B to X and X with a change of variables. For the
vertex functiong (i.e. for B=ecomplex plane), only the equationg
should be the game, not the solutiong. Solutiong pick the z-gide or
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[t ig an interesting feature of q-difference equations, that an
equation can be separately regular in two groups of variables, but
not jointly. Thie ean never happen for differential equationg !

The z-golutiong and the a-olutiong of the same difference
equation mugt be connected by a matrix of elliptic function
that exchangeg poles in z-variableg for the poleg in a-
variableg. We call it the the pole-subtraction matrix.



Monodromy vs. pole subtraction:

+ both elliptic

+ one global/analytic another local/algorithmic

- pole gubtraction containg the monodromy ag followsg
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 funetiong and eheck whether they are the eame
e

| To cafch thece rational functione, we brought i~
7 ( 1 he verfex functiong, which are not the came for
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 To catch the monadromy we infroduced the pole eubfraction
~ matrices, and now we want fo prove those are the eame for

x\‘.and'x“_“ -

Xand X, but o soe e sae dffrnce



almogt there, becauge the pole
- Qubtraction matriceg are caught by the

fol[ouuing . o Q‘c course!

o)

-

Theorem [Aganagic-O]

The pole eubtraction matrices for X

are the elliptic stable envelopes for the
action of the eymplectic torue A on X.

Stande fo reacon, ae the pole eubtraction matrix furng vertex functione for the fixed
locus XA into vertex functiong for X | ‘



Elliptic stable envelopes of [M.A. &

A0 are correct elliptic "clagges” of ><
attracting manifolds of the fixed loci T 7\
X A. Characterized ag unique

gectiong with given support of the
right line bundleg on the (gpectrum XA
of) elliptic cohomology of X A x X .
Very rigid. The line bundle ig an

elliptic funetion of the Kahler 1£ W\

low$

variableg z.
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While it takeg time and care to properly set up thingg in
equivariant elliptic cohomology, it ie quite remarkable that
quantum, i.e. K-theoretic curve-counting computationg for X
may be reduced to claggical computationg in elliptic
cohomology of X.

In the end, EllqudX) ie just 4 echeme (in good genge of thie
term), not too complicated, bagieally a union of abelian varieties,
and we are agking for 3 gection of a line bundle on it



There ig aleo a trangparent phygical inferpretation of elliptic stable
envelopes in terme of boundary eonditiong. Elliptic eohomology of
X ig one, maybe the only, vergion of the K-theory of the category
of boundary conditione for our susy o-model >< -




[t two theorieg are equivalent, there i a special duality
interface between the two bulk theorieg along which
nothing changeg, except the wordg that we uge to degcribe
the came reality |




In particular, the duality interface should turn the vertex
 functiong for X into vertex funetiong for ite mirror X, which
are the a-golutiong of the eame g-difference equation, and
vice verea




[Therefore, the duality interface produces an elliptic elagg M on
X x X, which gives the stable envelopes for X upon regtriction
to torug-fixed pointein X and vice verea. Recall both 4 and z
enter the definition of etable envelopeg for X, and M ig a gection
of a line bundle that depends on a and z symmetrically.
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In fact, just the data of two schemes & and ¢ " with certain

mape that make them look like EII(X) and EIIX ) ie enough to
uniquely characterize the mother clage M, the gtable envelopes,
the monodromieg, the difference equationg, and KthFTs ... From
thig, or any pergpective, the existence of M ig highly nonobvioug

Sk Lk




For gauge theorieg, let X be the mirror of X in the following
genge: the fixed pointg are icolated on both gides and the fixed
pointe p in X are mirror 1o the tangent gpaces to fixed points in
X_. Thig meane that certain 1 x 1 difference equationg coincide,
which ie reagonably etraightforward to check.

Theorem™ (Aganagic-O) With thege hypothesig, the clage M
exigte and the two KithFTe are equivalent.



Example: Abelian theories. These come from a dual pair of
exact gequenceg of tori @:X)h
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Alg geom vergion of boundary valueg i¢ the natural map
‘ | X 'VM Sl . X
e o
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therefore the (Tate vercion of the) category of boundary
conditions should be certain equivariant quagicoherent
sheaveg on LX with, roughly, halt-dimengional support



On LX iteelf there ie an aetion of
+q by loop rotationg

+ Cochar{A)] \eubget Loops(A)
+ Char(Z) = pi_=connected components of LoopelGauge)

On equivariant sheaveg on LX, there i further action of
- Char(A) by equivariant twiste
- Cochar(2) twigte by line bundleg

We expect the mother clase M to categorify to an
equivalence intertwining these actions.
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