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Duality interfaces  
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We study indices in SUSY theories in dim=2+1  

A lot of important work on these in recent years, in 
particular by D.Gaiotto, T.Dimofte, ...  and their collaborators. 
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Indices may be computed in the IR, that is, when the space B 
is very large. In that limit, we can replace the original theory by 

We study indices in SUSY theories in dim=2+1  
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In reality, a singular algebraic symplectic variety.

We study theories with 8 supercharges, and for them X wants to 
be a hyperKähler manifold.  












































G complexified gauge group

M symplectic representation of G

X i o G

complex

stage

real moment
map A

It is a very interesting geometric and physical problem to figure 
out what is the right geometry for more general theories. 

In alg geom, nice moduli space of maps B ---> X, namely 
quasimaps (=vortex solutions), exist for SUSY gauge theories, 
described by  
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Moduli Det t

SUSY indices are defined in algebraic geometry as indices of 
virtual Dirac operator on the moduli space of maps:   

In reality, the Euler characteristic of the virtual Â-genus, which may 
be defined as an element of K(Moduli) in very favorable 
circumstances (see above). 
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are graded by  
the action of Aut(X) x Aut(B)  •
the topology of the map, recorded by   •

In other words, they are functions on Aut(X) x Aut(B) times  
 

Indices for   
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The surface B can have marked points   

where one can put insertions (line operators in dim=2+1). The 
space of possible insertions is as big as the K–theory of X. If there 
are n marked points, the indices are functions of z and equivariant 
variables with values in  
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This data forms K-theoretic analog of CohFT    

With the extra feature that the metric depends on z (but not on the 
automorphisms q of the 2-pointed sphere):  





















Reconstruction theorems of Givental-Teleman kind are expected to 
hold in all examples of interest. In other words, one should be able 
to construct indices directly as virtual vector bundles on the moduli 
spaces of pointed curves starting from the data that will be 
discussed below.  
 
This K-thereoretic-FT really is the complete description of indices. 
It may be taken as a substitute to curve-counting when no curve-
counting may be set up with existing technology. 








A key phenomenon in the field is that of 3-dimensional mirror 
symmetry. It goes back to [Intrilligator-Seiberg] and predicts 
certain pairs of KthFT's to be exactly equal with:  
 

the exchange of degree a.k.a. Kähler variables z and the •
equivariant variables a in a maximal torus A of Aut(X,ω) 
a suitable identification of Kequiv(X)[[z]] with Kequiv(Xˇ)[[a]] •

 
This is very powerful and also something we can actually prove 
when both curve counts are defined within present technology.  




















This lends support to the basic expectation (known in many very  
challenging cases) that the indices are also rational functions of 
the Kähler variables z whenever B is compact. This includes e.g. 
the famous rationality in the boxcounting variable in the DT theory  

For instance, equivariant K-theoretic counts in algebraic geometry 
are group characters (in particular Laurent polynomials), whenever 
compact and rational functions otherwise (with location of the 
poles under excellent control).  

















































Rational functions are very simple and therefore not so easy to 
characterize. To get a better grip on the things, we will introduce 
progressively more and more complicated, and hence more rigid, 
functions and structures.  
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As a first step, we will take B which is noncompact.The simplest 
such geometry is the whole complex plane. We work equivariantly 
with respect to rotation q\in Aut(B), which is analogous to the 
definition of Nekrasov's function in 5d.  

In math, this moduli space is defined as an open set inside maps 
from P^1 to X for which f is nonsingular at infinity (similarly to 
the use of Uhlenbeck compactification in Nekrasov theory).  
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They can take a further insertion at 0, in which case they 
look like operators in K(X)  

One name for these indices are vertex functions.  They take an 
argument in K(X) via the evaluation f(∞) \in X.  



















Vertex functions are fancy generalization of q-hypergeometric 
functions, and become exactly q-hypergeometric functions for the 
simplest nontrivial X.  

These vertex functions are not rational functions. Instead, they 
solve q-difference equations in all other arguments with rational 
coefficients. (The matrices of these equations come from indices on P^1, which sort 
of explains why they are rational. The actual math argument goes in the opposite 
direction.) 








































































winemighia Er

f

form w

Vertex perturbative zdfhtqdafhgaagd

altalc

PGLGIttutfx.co a a ft qix
















The XIX century charm of the q-hypergeometric function should 
not be misleading, in general these are not as huggable: 

For instance, for X=Hilb(C^2,n) the vertex function is the 1-leg 
vertex in K-theoretic Donaldson-Thomas theory (whence the 
name).  Vertex functions for X=Hilb(A_r,n) contain 2- and 3-leg 
vertices for K-theoretic DT counts. 













Remarkably, the q-difference equations are known in some 
generality (in terms of certain powerful geometric representation 
theory [O., Smirnov-O.]). If the q-difference equation in just one of 
the variables is known, this constrains them all essentially uniquely.  

E.g., for X=Hilb(C^2,n) the equation is the q-difference version of 
the quantum differential equation of [O.-Pandharipande]. It is 
what people may call the dynamical equation for quantum double 
loops into gl(1) (= q-difference version of the algebra from 
Davide's lecture)  
































The best handle we have on these equations goes through the 
identification of their monodromy.  

For the 3d mirror symmetry, X=Hilb(C^2,n) is self-mirror, so 
the equations in z and a \in SL(2) should be the same. True, but 
very nontrivial to see, a very indirect argument is needed.  








































































with the solution of the same equation near z=∞  
(which is given by the vertex functions of the flop of X). Given 
by a matrix of elliptic functions in z, a, and \hbar  

The monodromy of a q-difference equation is the 
comparison of the fundamental solution near z=0, e.g.  
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Monodromy 45 Yo
Abstractly, the monodromy is a transcendental map between two 
algebraic varieties, like the exponential map in Lie theory. In our 
case, under excellent control due to the following physical/
geometric reason ...  
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Recall that for compact B, the 3d mirror symmetry equates counts 
of maps for B to X and Xˇwith a change of variables. For the 
vertex functions (i.e. for B=complex plane), only the equations 
should be the same, not the solutions. Solutions pick the z-side or 
the a-side! 



























  



























It is an interesting feature of q-difference equations, that an 
equation can be separately regular in two groups of variables, but 
not jointly. This can never happen for differential equations ! 

The z-solutions and the a-solutions of the same difference 
equation must be connected by a matrix of elliptic function 
that exchanges poles in z-variables for the poles in a-
variables. We call it the the pole-subtraction matrix. 
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Monodromy vs. pole subtraction: 
both elliptic  •
one global/analytic another local/algorithmic •
pole subtraction contains the monodromy as follows  •








































































In our context
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In case you feel lost: 

To catch the monodromy we introduced the pole subtraction  
matrices, and now we want to prove those are the same for 
X and Xˇ 

At first, we wanted to compute some rational 
functions and check whether they are the same 
for X and Xˇ 

To catch these rational functions, we brought in 
the vertex functions, which are not the same for 
X and Xˇ, but should solve the same difference 
equation, and so their monodromy should be the 
same. 





































Theorem [Aganagic-0] 
The pole subtraction matrices for X 
are the elliptic stable envelopes for the 
action of the symplectic torus A on X. 

Stands to reason, as the pole subtraction matrix turns vertex functions for the fixed 
locus X^A into vertex functions for X 

almost there, because the pole 
subtraction matrices are caught by the 
following  
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Elliptic stable envelopes of [M.A. & 
A.O.] are correct elliptic "classes"  of 
attracting manifolds of the fixed loci 
X^A. Characterized as unique 
sections with given support of the  
right line bundles on the (spectrum 
of) elliptic cohomology of X^A x X .  
Very rigid.  The line bundle is an 
elliptic function of the Kähler 
variables z. 





















While it takes time and care to properly set up things in 
equivariant elliptic cohomology, it is quite remarkable that 
quantum, i.e. K-theoretic curve-counting computations for X 
may be reduced to classical computations in elliptic 
cohomology of X.  

In the end, Ellequiv(X) is just a scheme (in good sense of this 
term), not too complicated, basically a union of abelian varieties, 
and we are asking for a section of a line bundle on it.  
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There is also a transparent physical interpretation of elliptic stable 
envelopes in terms of boundary conditions. Elliptic cohomology of 
X is one, maybe the only, version of the K-theory of the category 
of boundary conditions for our susy σ-model 










































































If two theories are equivalent, there is a special duality 
interface between the two bulk theories along which 
nothing changes, except the words that we use to describe 
the same reality. 
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In particular, the duality interface should turn the vertex 
functions for X into vertex functions for its mirror Xˇ, which 
are the a-solutions of the same q-difference equation, аnd 
vice versa. 
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Therefore, the duality interface produces an elliptic class M on  
X x Xˇ, which gives the stable envelopes for X upon restriction 
to torus-fixed points in  Xˇ аnd vice versa. Recall both a and z  
enter the definition of stable envelopes for X, and M is a section 
of a line bundle that depends on a and z symmetrically.  
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In fact, just the data of two schemes E and Eˇ with certain 
maps that make them look like Ell(X) and Ell(Xˇ) is enough to 
uniquely characterize the mother class M, the stable envelopes, 
the monodromies, the difference equations, and KthFTs ...  From 
this, or any perspective, the existence of M is highly nonobvious













































For gauge theories, let Xˇ be the mirror of X in the following 
sense: the fixed points are isolated on both sides and the fixed 
points p in X are mirror to the tangent spaces to fixed points in 
Xˇ. This means that certain 1 x 1 difference equations coincide, 
which is reasonably straightforward to check.  

Theorem* (Aganagic-O)  With these hypothesis, the class M 
exists and the two KthFTs are equivalent.  
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coordinates out coordinates

Example: Abelian theories. These come from a dual pair of 
exact sequences of tori 



























































Explicit formulas for some nonabelian theories have been 
investigated by R.Rimányi, A.Smirnov, A.Varchenko, Z.Zhou 








































































Categorification 
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therefore the (Tate version of the) category of boundary 
conditions should be certain equivariant quasicoherent 
sheaves on LX with, roughly, half-dimensional support  

Alg geom version of boundary values is the natural map  
























































We expect the mother class M to categorify to an 
equivalence intertwining these actions.  

On equivariant sheaves on LX, there is further action of  
Char(A)  by equivariant twists  •
Cochar(Z) twists by line bundles  •

On LX itself, there is an action of  
q by loop rotations  •
Cochar(A)  \subset Loops(A)  •
Char(Z) = pi_1=connected components of Loops(Gauge)   •



























































