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Warmup 1/22

Let g be a Lie algebra, Ug its universal enveloping algebra.

Question: Can one recover g from Ug?

Ug has a coproduct ∆: Ug→ Ug⊗ Ug. An element x ∈ Ug is
primitive if ∆(x) = 1⊗ x + x ⊗ 1.

The commutator of two primitive elements in a bialgebra is again
primitive, so the set of primitive elements is naturally a Lie algebra.
PBW =⇒ The natural map g→ Ug takes g isomorphically onto
the Lie algebra of primitives in Ug.
Hence the answer is YES.
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A trickier question 2/22

The previous positive answer to the question supposes that we
know Ug as a bialgebra.

What if we are only given Ug as an associative algebra?

More formally: if g and h are Lie algebras such that Ug and Uh are
isomorphic as associative algebras, must g and h be isomorphic?

Spoiler: The answer is still YES!
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Quasi-isomorphism 3/22

Let A and A′ be (super)commutative dg algebras.

A morphism f : A→ A′ is a quasi-isomorphism if the induced map
H(A)→ H(A′) is an isomorphism.

We say that A and A′ are quasi-isomorphic as commutative dg
algebras, and write A ' A′, if there exists a zig-zag of
commutative dg algebras and quasi-isomorphisms between them:

A
∼←− • ∼−→ · · · ∼←− • ∼−→ A′.

CAUTION: This does not imply the existence of a
quasi-isomorphism A→ A′!



Quasi-isomorphism 3/22

Let A and A′ be (super)commutative dg algebras.

A morphism f : A→ A′ is a quasi-isomorphism if the induced map
H(A)→ H(A′) is an isomorphism.

We say that A and A′ are quasi-isomorphic as commutative dg
algebras, and write A ' A′, if there exists a zig-zag of
commutative dg algebras and quasi-isomorphisms between them:

A
∼←− • ∼−→ · · · ∼←− • ∼−→ A′.

CAUTION: This does not imply the existence of a
quasi-isomorphism A→ A′!



Quasi-isomorphism 3/22

Let A and A′ be (super)commutative dg algebras.

A morphism f : A→ A′ is a quasi-isomorphism if the induced map
H(A)→ H(A′) is an isomorphism.

We say that A and A′ are quasi-isomorphic as commutative dg
algebras, and write A ' A′, if there exists a zig-zag of
commutative dg algebras and quasi-isomorphisms between them:

A
∼←− • ∼−→ · · · ∼←− • ∼−→ A′.

CAUTION: This does not imply the existence of a
quasi-isomorphism A→ A′!



Quasi-isomorphism 4/22

We define similarly the notion of quasi-isomorphism for dg Lie
algebras, dg associative algebras, etc.

A priori it could happen that two commutative dg algebras are
quasi-isomorphic as associative dg algebras, but not
quasi-isomorphic as commutative dg algebras. This would mean
that there exists a zig-zag of quasi-isomorphisms

A
∼←− • ∼−→ · · · ∼←− • ∼−→ A′

in the category of associative dg algebras, but no zig-zag in which
every intermediate dg algebra is actually commutative.
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First main theorem 5/22

Theorem A (C-P-RN-W ’19): Let A and A′ be commutative dg
algebras. If A and A′ are quasi-isomorphic as dg algebras, then
they are also quasi-isomorphic as commutative dg algebras.



Koszul duality 6/22

Second main theorem is Koszul dual to Theorem A. Koszul duality
has the form:

(dg Lie algebras) � (commutative dg algebras)
(associative dg algebras) � (associative dg algebras)

Example: the Koszul dual of a Lie algebra g is the commutative dg
algebra of Chevalley–Eilenberg cochains

∧
g∗[−1].

Koszul duality interchanges the forgetful functor from commutative
to associative algebras (on the right hand side) and the universal
enveloping functor from Lie algebras to associative algebras (on
the left hand side).
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Second main theorem 7/22

Theorem B (C-P-RN-W ’19): Let g and g′ be dg Lie algebras
concentrated in positive or negative homological degree. If Ug and
Ug′ are quasi-isomorphic as dg algebras, then g and g′ are
quasi-isomorphic.

Remark: We need the assumption on positive or negative grading
because Koszul duality is rarely a perfect duality — information is
usually lost when passing from one side of the duality to the other.
This version of Theorem B does not resolve the version of the
question for classical Lie algebras (i.e. with no grading or
differential).
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Second main theorem, variant 8/22

Theorem B, variant: Let k and k′ be dg Lie coalgebras. If their
universal coenveloping coalgebras Uck and Uck′ are weakly
equivalent as dg coalgebras, then k and k′ are weakly equivalent as
dg Lie coalgebras.

Corollary: Let g and g′ be finite dimensional Lie algebras. If Ug
and Ug′ are isomorphic, then so are g and g′.

The corollary follows by taking the linear duals of g and g′ to
obtain Lie coalgebras. We need finite dimensionality for the linear
dual to be a Lie coalgebra.
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Remarks 9/22

Saleh ’17: proved the cases of Theorems A and B when A′ = H(A),
resp. when g′ = H(g′) (so Saleh’s result are about formality)

Question of whether Ug determines g is analogous to more well
studied question of whether a group can be recovered from its
group algebra. Hertweck ’01: there exists finite groups G and H
such that ZG ∼= ZH as associative algebras, but G 6∼= H.
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Applications to rational homotopy theory 10/22

Sullivan ’77: constructed functor APL from topological spaces to
commutative dg algebras over Q.

Proved:

APL(X ) ' C ∗(X ,Q) as dg algebras

X and Y have the same rational homotopy type ⇐⇒
APL(X ) ' APL(Y ) as commutative dg algebras

(Theorem A + Sullivan) =⇒ X and Y have the same rational
homotopy type if and only if C ∗(X ,Q) ' C ∗(Y ,Q) as dg algebras.

(Theorem B + Quillen) =⇒ X and Y have the same rational
homotopy type if and only if C∗(ΩX ,Q) ' C∗(ΩY ,Q) as dg
algebras.
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A first reformulation 11/22

The first step in the proof of Theorem A is to replace dg algebras
with A∞-algebras and commutative dg algebras with C∞-algebras
(“commutative A∞-algebras”).

A ' A′ as dg algebras ⇐⇒ there exists an
A∞-quasi-isomorphism A→ A′.

A ' A′ as commutative dg algebras ⇐⇒ there exists a
C∞-quasi-isomorphism A→ A′.

Theorem A ⇐⇒ If there exists an A∞-quasi-isomorphism
between two C∞-algebras, then there also exists a
C∞-quasi-isomorphism between them.



A first reformulation 11/22

The first step in the proof of Theorem A is to replace dg algebras
with A∞-algebras and commutative dg algebras with C∞-algebras
(“commutative A∞-algebras”).

A ' A′ as dg algebras ⇐⇒ there exists an
A∞-quasi-isomorphism A→ A′.

A ' A′ as commutative dg algebras ⇐⇒ there exists a
C∞-quasi-isomorphism A→ A′.

Theorem A ⇐⇒ If there exists an A∞-quasi-isomorphism
between two C∞-algebras, then there also exists a
C∞-quasi-isomorphism between them.



A first reformulation 11/22

The first step in the proof of Theorem A is to replace dg algebras
with A∞-algebras and commutative dg algebras with C∞-algebras
(“commutative A∞-algebras”).

A ' A′ as dg algebras ⇐⇒ there exists an
A∞-quasi-isomorphism A→ A′.

A ' A′ as commutative dg algebras ⇐⇒ there exists a
C∞-quasi-isomorphism A→ A′.

Theorem A ⇐⇒ If there exists an A∞-quasi-isomorphism
between two C∞-algebras, then there also exists a
C∞-quasi-isomorphism between them.



Interlude: what is a C∞-algebra? 12/22

Recall that an A∞-algebra A is equipped with operations
µn : A⊗n → A, n ≥ 1, so that µ1 is a differential, and µ2 is a
multiplication which is associative up to higher homotopies
provided by the µn, n ≥ 3.

A C∞-algebra A is an A∞-algebra such that the operations µn
vanish on so-called “signed shuffles”.

For example, µ2 vanishes on all elements of the form
x ⊗ y − (−1)|x ||y |y ⊗ x , i.e. the multiplication is commutative. The
condition that the higher µn vanish on shuffles is some kind of
commutativity condition on the homotopies.
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Interlude: what is a C∞-algebra? 13/22

An A∞-morphism of A∞-algebras f : A→ B is specified by a
collection of maps fn : A⊗n → B, n ≥ 1. If A and B are
C∞-algebras, then f is called a C∞-morphism if the components fn
similarly vanish on signed shuffles.

In particular, if A and B are C∞-algebras, then there are typically
many more A∞-morphisms A→ B than there are C∞-morphisms.
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A second reformulation 14/22

Every A∞-algebra is quasi-isomorphic to its homology, with a
transferred A∞-algebra structure . Same for C∞-algebras.
(Kadeishvili ’80s)

This means that when proving Theorem A we may as well replace
A and A′ with their homologies. But H(A) = H(A′) since A ' A′.

Theorem A ⇐⇒ Given two C∞-algebra structures on the same
graded vector space, and an A∞-isomorphism between them whose
linear term is the identity map (an A∞-isotopy), there also exists a
C∞-isotopy between them.
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Interlude: Formal deformation theory 15/22

Principle due to Deligne, Drinfeld, and developed by Feigin, Hinich,
Kontsevich–Soibelman, Lurie, Pridham (and others): every dg Lie
algebra gives rise to a formal deformation problem and every
formal deformation problem arises from a dg Lie algebra.

If g is a dg Lie algebra, then the solutions to the deformation
problem are the Maurer–Cartan elements

MC(g) = {x ∈ g−1 : dx +
1

2
[x , x ] = 0}.

Deformation equivalence of solutions is defined by the action of the
gauge group exp(g0).
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Interlude: Formal deformation theory 16/22

Usually exp(g0) is only defined after tensoring with the maximal
ideal in a local Artin ring, in order for the
Baker–Campbell–Hausdorff formula to converge.

So we get a functor assigning to a local Artin ring the groupoid of
solutions over that ring and their gauge equivalences. Such a
functor is essentially a formal stack (a formal neighborhood of a
point in some moduli space) and this is what we mean with a
“formal deformation problem”.

Our setting here is somewhat different: we will consider complete
dg Lie algebras, i.e. dg Lie algebras equipped with a complete
filtration which makes the required power series converge. No
Artin rings anywhere.
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Our setting here is somewhat different: we will consider complete
dg Lie algebras, i.e. dg Lie algebras equipped with a complete
filtration which makes the required power series converge. No
Artin rings anywhere.



The deformation complex 17/22

If V is a chain complex, there exists a deformation complex
DefA∞(V ), which is a complete dg Lie algebra. It satisfies:

Maurer–Cartan elements of DefA∞(V ) are A∞-algebra
structures on V .

Gauge equivalences are A∞-isotopies
(Dotsenko–Shadrin–Vallette ’16).

There is a dg Lie subalgebra DefC∞(V ) ⊂ DefA∞(V )
parametrizing C∞-algebra structures on V .
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The deformation complex 18/22

The dg Lie algebra DefA∞(V ) is more or less the Hochschild
cochain complex of V .

A∞-structure on V = Maurer–Cartan element µ in DefA∞(V )  
“twisted differential” d + [µ,−] on DefA∞(V )

...and then (DefA∞(V ), d + [µ,−]) ≈ (CC •(V ,V ), dHoch)

Similarly DefC∞(V ) ≈ Harrison cochains
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A third reformulation 19/22

Question: Let i : h ↪→ g be a dg Lie subalgebra. When do we have
an inclusion

MC(h)/ exp(h0) ↪→ MC(g)/ exp(g0) ?

Theorem (C-P-RN-W ’19) If i : h ↪→ g is an inclusion of complete
dg Lie algebras and there exists r : g→ h which is a filtered
retraction of h-modules, i.e.

r ◦ i = idh

r [i(x), y ] = [x , r(y)]

then MC(h)/ exp(h0) −→ MC(g)/ exp(g0) is injective.
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Good news 20/22

So we should construct a retraction of the Hochschild cochains
onto the Harrison cochains.

Such a retraction was constructed by Barr ’68. It is how he proved
that Harr(A,A) injects into HH(A,A) over a field of characteristic
zero.

This proves Theorem A.
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A proof sketch 21/22

Let g, h, r as earlier.

Take x , y ∈ MC(h), take a ∈ g0 with exp(a) · x = y .

Define inductively elements a(n) ∈ g0 and x (n) ∈ MC(h) by

a(0) = a a(n+1) = BCH(a(n),−r(a(n)))

x (0) = x x (n+1) = exp(r(a(n))) · x (n)

One shows limn→∞ x (n) = y and limn→∞ r(a(n)) = 0

So
∏

n≥0 exp(r(a(n))) ∈ exp(h0) is a well defined gauge from x to
y . QED
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Naive proof of Theorem B from Theorem A 22/22

Let B,Ω and C, L denote the bar and cobar functors between dg
algebras and dg coalgebras, and dg Lie algebras and
cocommutative dg coalgebras, respectively.

Suppose Ug ' Ug′. Then ULCg ' ULCg′.

But UL(−) ∼= Ω(−). So ΩCg ' ΩCg′.

Thus we get Cg ' BΩCg ' BΩCg′ ' Cg′, zig-zag of
quasi-isomorphisms of dg coalgebras.

By a dual of form of Theorem A we obtain that Cg ' Cg′ as
cocommutative dg coalgebras. Hence g ' LCg ' LCg′ ' g′.
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Tack!


