
Anomalies in the Space of Coupling 
Constants

Nathan Seiberg
IAS

C. Córdova, D. Freed, H.T. Lam, NS  
arXiv:1905.09315, arXiv:1905.13361

1



Introduction

• It is standard to explore a classical or quantum theory as a 
function of its parameters.  Two complementary applications:
– Family of theories (e.g. Berry phase)
– Make the coupling constants spacetime dependent

• More generally, we should view every theory as a function of 
– Spacetime dependent coupling constants
– Spacetime dependent background gauge fields for global 

symmetries
– Spacetime geometry (and associated choices like spin-

structure, etc.)
– Explore defects (e.g. interfaces) as these vary in spacetime
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Introduction

We will discuss “generalized anomalies’’ in this large space of 
backgrounds and will examine two classes of applications
• An anomaly in a (multi-parameter) family of theories can lead, 

à la ‘t Hooft, to constraints on its long-distance behavior, e.g. 
predict phase transitions.  
– This is also useful as a test of dualities

• The coupling constants can vary in spacetime leading to a 
defect.  The anomaly constrains the dynamics on the defect.

Since this view unifies many different, recently-studied 
phenomena, some of the results may seem familiar to many of 
you.
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Introduction

This view will streamline, unify, and strengthen many known 
results, and will lead to new ones.
• We will start by demonstrating them in very simple examples 

(QM of a particle on a ring, 2d 𝑈𝑈(1) gauge theory).
– Since these examples are elementary, the more powerful 

formalism is not essential.  But the examples provide a 
good pedagogical way to demonstrate the formalism.

• Then we will briefly turn to more advanced and more recently 
studied examples.

• We’ll end by revisiting the free 4d fermion.
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Quantum mechanics of a particle on a ring

ℒ = 1
2
𝑞̇𝑞2 + 𝑖𝑖

2𝜋𝜋
𝜃𝜃𝑞̇𝑞 with 𝑞𝑞 ∼ 𝑞𝑞 + 2𝜋𝜋

𝜃𝜃 ∼ 𝜃𝜃 + 2𝜋𝜋

Spectrum   𝐸𝐸𝑛𝑛 = 1
2
𝑛𝑛 − 𝜃𝜃

2𝜋𝜋

2

Symmetries: 
• 𝑈𝑈 1 : 𝑞𝑞 → 𝑞𝑞 + 𝛼𝛼
• 𝒯𝒯: 𝑞𝑞 𝜏𝜏 → −𝑞𝑞 −𝜏𝜏
• 𝜃𝜃 ∈ 𝜋𝜋 ℤ, also 𝒞𝒞: 𝑞𝑞 → −𝑞𝑞 (and therefore also 𝒞𝒞𝒞𝒞) combining 

to 𝑂𝑂 2
• 𝜃𝜃 ∈ 𝜋𝜋(2 ℤ + 1), the Hilbert space is in a projective 

representation. 
– A mixed 𝒞𝒞-𝑈𝑈(1) anomaly [Gaiotto, Kapustin, Komargodski, 

NS].  This guarantees level-crossing there. 5



Quantum mechanics of a particle on a ring
[Gaiotto, Kapustin, Komargodski, NS]

Couple to a background 𝑈𝑈(1) gauge field 𝐴𝐴

ℒ =
1
2

(𝑞̇𝑞 + 𝐴𝐴)2+
𝑖𝑖
2𝜋𝜋

𝜃𝜃 𝑞̇𝑞 + 𝐴𝐴 + 𝑖𝑖 𝑘𝑘𝑘𝑘

𝑘𝑘 is a coupling for the background field only – a counterterm.
With nonzero 𝐴𝐴 the 𝜃𝜃 periodicity is modified

𝜃𝜃,𝑘𝑘 ∼ (𝜃𝜃 + 2𝜋𝜋,𝑘𝑘 − 1)

• Related to that, the spectrum 𝐸𝐸𝑛𝑛 = 1
2
𝑛𝑛 − 𝜃𝜃

2𝜋𝜋

2
is invariant 

under 𝜃𝜃 → 𝜃𝜃 + 2𝜋𝜋 , but the states are rearranged              
𝑛𝑛 → 𝑛𝑛 + 1 .
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ℒ =
1
2
𝑞̇𝑞2 +

𝑖𝑖
2𝜋𝜋

𝜃𝜃𝑞̇𝑞

Break 𝑈𝑈 1 → ℤ𝑁𝑁 with a potential, e.g.   𝑉𝑉 𝑞𝑞 = cos 𝑁𝑁𝑁𝑁 .
The qualitative conclusions are unchanged.
• For 𝑁𝑁 even, we still have a similar 𝒞𝒞 − ℤ𝑁𝑁 anomaly at 𝜃𝜃 = 𝜋𝜋

and hence the ground state is degenerate there.
• For 𝑁𝑁 odd, there is no anomaly – not a projective 

representation.  But there is still degeneracy at 𝜃𝜃 = 𝜋𝜋.
– In terms of background fields, we can preserve 𝒞𝒞 at 𝜃𝜃 = 𝜋𝜋

by adding a counterterm 𝑖𝑖 𝑁𝑁−1
2
𝐴𝐴 for the ℤ𝑁𝑁 gauge field 𝐴𝐴. 

But then there is no 𝒞𝒞 at 𝜃𝜃 = 0 (referred to as “global 
inconsistency”).
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Quantum mechanics of a particle on a ring
[Gaiotto, Kapustin, Komargodski, NS]



Quantum mechanics of a particle on a ring

ℒ =
1
2
𝑞̇𝑞2 + 𝑉𝑉(𝑞𝑞) +

𝑖𝑖
2𝜋𝜋

𝜃𝜃𝑞̇𝑞

Break 𝒞𝒞 and 𝒯𝒯 for all 𝜃𝜃, e.g. by making 𝑉𝑉 𝑞𝑞 generic (but ℤ𝑁𝑁
invariant) and adding degrees of freedom.
Now, the symmetry is only ℤ𝑁𝑁 (no 𝑈𝑈(1) and no 𝒞𝒞).
Add a ℤ𝑁𝑁 background field 𝐴𝐴 and a counterterm 𝑖𝑖𝑖𝑖𝑖𝑖 (with 𝑘𝑘 an 
integer modulo 𝑁𝑁).  Again 

𝜃𝜃,𝑘𝑘 ∼ (𝜃𝜃 + 2𝜋𝜋,𝑘𝑘 − 1)
Continuously shifting 𝜃𝜃 by 2𝜋𝜋, the states are rearranged – a state 
with ℤ𝑁𝑁 charge 𝑙𝑙 is mapped to a state with a ℤ𝑁𝑁 charge 
𝑙𝑙 + 1 mod 𝑁𝑁. 

The ground state must jump (level-crossing) at least once in 𝜃𝜃 ∈
0,2𝜋𝜋 . There is a “phase transition.”
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Quantum mechanics of a particle on a ring

ℒ =
1
2
𝑞̇𝑞2 + 𝑉𝑉(𝑞𝑞) +

𝑖𝑖
2𝜋𝜋

𝜃𝜃𝑞̇𝑞
𝜃𝜃,𝑘𝑘 ∼ (𝜃𝜃 + 2𝜋𝜋,𝑘𝑘 − 1)

Two views on the parameter space
• Either 𝜃𝜃 ∼ 𝜃𝜃 + 2𝜋𝜋𝜋𝜋 and preserve the ℤ𝑁𝑁 symmetry 
• Or 𝜃𝜃 ∼ 𝜃𝜃 + 2𝜋𝜋, but violate the ℤ𝑁𝑁 symmetry

Generalized anomaly between the ℤ𝑁𝑁 symmetry and  𝜃𝜃 ∼ 𝜃𝜃 +
2𝜋𝜋 (related discussion in [Thorngren; NS, Tachikawa, Yonekura]).

The anomaly is characterized by the 2d bulk term 𝑖𝑖
2𝜋𝜋
∫ 𝑑𝑑𝑑𝑑𝑑𝑑.  

(Below it will be defined carefully.)
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Quantum mechanics of a particle on a ring

Anomaly between the global ℤ𝑁𝑁 symmetry and the 𝜃𝜃 periodicity.

It is characterized by the 2d bulk term 𝑖𝑖
2𝜋𝜋
∫ 𝜃𝜃𝜃𝜃𝜃𝜃

• Viewing our system as a one-parameter family of theories 
labeled by 𝜃𝜃 the anomaly means that there must be level-
crossing – “a phase transition.”  (Alternatively, this follows 
from tracking the ℤ𝑁𝑁 charge of the ground state.)

• “Interfaces” where 𝜃𝜃 changes as a function of time carry ℤ𝑁𝑁
charge.

• In order to discuss the interfaces we need to define the action 
more carefully.
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Quantum mechanics of a particle on a ring
When 𝜃𝜃 ∈ 𝕊𝕊1 is time dependent  ∮ 𝜃𝜃 𝜏𝜏 𝑞̇𝑞 𝜏𝜏 𝑑𝑑𝑑𝑑 should be 
defined more carefully (differential cohomology).
Divide the Euclidean-time circle into patches 𝒰𝒰𝐼𝐼 = (𝜏𝜏𝐼𝐼 , 𝜏𝜏𝐼𝐼+1),
where 𝜃𝜃 is a continuous function to ℝ (no 2𝜋𝜋 jump) and it jumps 
by 2𝜋𝜋𝑚𝑚𝐼𝐼 with 𝑚𝑚𝐼𝐼 ∈ ℤ on overlaps of patches.

1
2𝜋𝜋

∮ 𝜃𝜃 𝜏𝜏 𝑞̇𝑞 𝜏𝜏 𝑑𝑑𝑑𝑑 ≡ �
𝐼𝐼

1
2𝜋𝜋

�
𝒰𝒰𝐼𝐼
𝜃𝜃𝜃𝜃𝜃𝜃 + 𝑚𝑚𝐼𝐼𝑞𝑞 𝜏𝜏𝐼𝐼 mod 2𝜋𝜋

• Independent of the trivialization
• Invariant under 𝑞𝑞 → 𝑞𝑞 + 2𝜋𝜋 and under 𝜃𝜃 → 𝜃𝜃 + 2𝜋𝜋
• If 𝜃𝜃(𝜏𝜏) has nonzero winding 𝑀𝑀 = ∑𝐼𝐼𝑚𝑚𝐼𝐼, this term is not 

invariant under 𝑈𝑈 1 : 𝑞𝑞 → 𝑞𝑞 + 𝛼𝛼.  
This is our anomaly.
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Smooth, universal

Discontinuous, not universal 
(can add an operator)

Discontinuous with 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖.
It is transparent

3 kinds of “interfaces”
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𝜃𝜃 = 2𝜋𝜋𝜋𝜋

𝜃𝜃 = 0

𝜃𝜃 = 0

𝜃𝜃 = 2𝜋𝜋𝜋𝜋

𝜃𝜃 = 0

𝜃𝜃 = 2𝜋𝜋𝜋𝜋



This is a rapid change in the Hamiltonian at some Euclidean time.  
In the “sudden approximation” it relabels the states 

𝑛𝑛 → 𝑛𝑛 + 𝑚𝑚 ,
which can be achieved by multiplying by 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖.  This means that 
the interface has 𝑈𝑈(1) charge 𝑚𝑚. 
When 𝜃𝜃 winds 𝑚𝑚 times around the Euclidean circle, the 𝑈𝑈(1)
symmetry is violated by 𝑚𝑚 unites.

𝜃𝜃 = 0

A steep but smooth “interface”
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This anomaly is related to a “symmetry”

Normally an anomaly is associated with a global symmetry:        
0-form, 1-form, etc.
We can think of this anomaly as associated with a “-1-form 
symmetry.”
Just as -1-branes (instantons) are not branes, a -1-form global 
symmetry is not a symmetry.
If we view it as a global symmetry,
• 𝜃𝜃 is its gauge field (its transition functions involve jumps by 
2𝜋𝜋𝜋)

• 𝑑𝑑𝜃𝜃 is the field strength (well defined even across overlaps)
• Then, this anomaly follows the standard anomaly picture.
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2d 𝑈𝑈(1) gauge theory
Consider a 2d 𝑈𝑈(1) gauge theory with 𝑁𝑁 charge-one scalars 𝜙𝜙𝑖𝑖

and impose that the potential 𝑉𝑉 𝜙𝜙 2 is 𝑆𝑆𝑆𝑆(𝑁𝑁) invariant.  

Include   𝑖𝑖
2𝜋𝜋
𝜃𝜃𝜃𝜃𝜃𝜃.

We are not going to assume charge conjugation symmetry.
• The system has a 𝑃𝑃𝑃𝑃𝑃𝑃 𝑁𝑁 global symmetry and we couple it 

to a background 𝑃𝑃𝑃𝑃𝑃𝑃 𝑁𝑁 gauge field 𝐵𝐵 with the counterterm

2𝜋𝜋𝑖𝑖
𝑘𝑘
𝑁𝑁
𝑤𝑤2 𝐵𝐵

𝑤𝑤2 𝐵𝐵 is the characteristic class that measures the  
obstruction to lifting the 𝑃𝑃𝑃𝑃𝑃𝑃(𝑁𝑁) bundle to 𝑆𝑆𝑆𝑆(𝑁𝑁).  
𝑘𝑘 is an integer modulo 𝑁𝑁.

• Now 𝜃𝜃,𝑘𝑘 ∼ (𝜃𝜃 + 2𝜋𝜋,𝑘𝑘 − 1) [Gaiotto, Kapustin, 
Komargodski, NS]. 
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2d 𝑈𝑈(1) gauge theory
• Now 𝜃𝜃,𝑘𝑘 ∼ (𝜃𝜃 + 2𝜋𝜋,𝑘𝑘 − 1) [Gaiotto, Kapustin, 

Komargodski, NS]. 
• This can be viewed as a mixed anomaly between the 

periodicity of 𝜃𝜃 and the global 𝑃𝑃𝑃𝑃𝑃𝑃 𝑁𝑁 symmetry.
• It is described by the 3d anomaly term (see also [Thorngren])

𝑖𝑖
𝑁𝑁
∫ 𝑑𝑑𝑑𝑑𝑤𝑤2 𝐵𝐵
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2d 𝑈𝑈(1) gauge theory
𝑖𝑖
𝑁𝑁
∫ 𝑑𝑑𝑑𝑑𝑤𝑤2 𝐵𝐵

Use the anomaly as in the QM example.
• A one-parameter family of theories: since the system is 

gapped, it must have a phase transition at some 𝜃𝜃.
– Note that we do not assume charge conjugation symmetry.

• A smooth interface, where 𝜃𝜃 → 𝜃𝜃 + 2𝜋𝜋𝜋𝜋 must have an 
anomalous QM system on it – a projective 𝑃𝑃𝑃𝑃𝑃𝑃 𝑁𝑁
representation with 𝑁𝑁-ality 𝑚𝑚.  
– Can interpret as 𝑚𝑚 charged particles due to Coleman’s 

mechanism.
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4d S𝑈𝑈(𝑁𝑁) gauge theory
This system has a one-form ℤ𝑁𝑁 global symmetry.  

Couple it to a classical two-form ℤ𝑁𝑁 gauge field 𝐵𝐵.  It twists the 
𝑆𝑆𝑆𝑆 𝑁𝑁 bundle to a 𝑃𝑃𝑃𝑃𝑃𝑃(𝑁𝑁) bundle with [Kapustin, NS]

𝑤𝑤2 𝑎𝑎 = 𝐵𝐵 ,

where 𝑤𝑤2 𝑎𝑎 is the obstruction to lifting the 𝑃𝑃𝑆𝑆𝑈𝑈(𝑁𝑁) bundle to 
𝑆𝑆𝑆𝑆(𝑁𝑁) – ‘t Hooft twisted configurations. 

Mixed anomaly between the ℤ𝑁𝑁 one-form symmetry and 𝜃𝜃 ∼
𝜃𝜃 + 2𝜋𝜋 characterized by the 5d term

𝑖𝑖
𝑁𝑁 − 1
2𝑁𝑁

∫ 𝑑𝑑𝑑𝑑 𝒫𝒫(𝐵𝐵)

with 𝒫𝒫 𝐵𝐵 the Pontryagin square of 𝐵𝐵.
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4d S𝑈𝑈(𝑁𝑁) gauge theory

𝑖𝑖
𝑁𝑁 − 1
2𝑁𝑁

∫ 𝑑𝑑𝑑𝑑 𝒫𝒫(𝐵𝐵)

This leads to earlier derived results:

• In 𝒩𝒩 = 1 SUSY, a mixed anomaly between the ℤ2𝑁𝑁 R-
symmetry and the ℤ𝑁𝑁 one-form symmetry.  Hence, a TQFT on 
domain walls [Gaiotto, Kapustin, NS, Willett] in agreement 
with the string construction of [Acharya, Vafa].

• …
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4d S𝑈𝑈(𝑁𝑁) gauge theory

𝑖𝑖
𝑁𝑁 − 1
2𝑁𝑁

∫ 𝑑𝑑𝑑𝑑 𝒫𝒫(𝐵𝐵)

• Without SUSY, a mixed anomaly between 𝒯𝒯 (equivalently, 𝒞𝒞𝒞𝒞)
and the ℤ𝑁𝑁 one-form symmetry at 𝜃𝜃 = 𝜋𝜋 (for even 𝑁𝑁) implies 
a transition at 𝜃𝜃 = 𝜋𝜋 (or elsewhere) [Gaiotto, Kapustin, 
Komargodski, NS]

– Can use the new anomaly in similar systems without 𝒯𝒯, 
(e.g. add a massive scalar with coupling 𝑖𝑖𝑖𝑖 𝑇𝑇𝑇𝑇(𝐹𝐹 ∧ 𝐹𝐹)).  
The gapped system must have a transition for some 𝜃𝜃.

• Nontrivial TQFT on interfaces where 𝜃𝜃 changes by 2𝜋𝜋𝜋𝜋
[Gaiotto, Komargodski, NS; Hsin, Lam, NS]
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Smooth, universal

Discontinuous, not universal 
(can add d.o.f on the interface)

Discontinuous, with special QFT
(e.g. a CS term). It is transparent

3 kinds of interfaces
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𝜃𝜃 = 2𝜋𝜋𝜋𝜋

𝜃𝜃 = 0

𝜃𝜃 = 0

𝜃𝜃 = 2𝜋𝜋𝜋𝜋

𝜃𝜃 = 0

𝜃𝜃 = 2𝜋𝜋𝜋𝜋



A free massive Weyl fermion in 4d
• The parameters: a complex mass 𝑚𝑚.
• Upon compactification of the 𝑚𝑚 plane, a nontrivial 2-cycle in 

the parameter space.
• The phase of 𝑚𝑚 can be removed by a chiral rotation             
𝜓𝜓 → 𝑒𝑒𝑖𝑖𝑖𝑖𝜓𝜓.  But because of a 𝑈𝑈 1 -gravitational anomaly, the 

Lagrangian is shifted by 𝑖𝑖𝑖𝑖
192𝜋𝜋2

𝑇𝑇𝑇𝑇(𝑅𝑅 ∧ 𝑅𝑅).  

• As above, we should add the counterterm 𝑖𝑖 𝜃𝜃𝐺𝐺
384 𝜋𝜋2

𝑇𝑇𝑇𝑇(𝑅𝑅 ∧ 𝑅𝑅), 

and then we should identify 𝑚𝑚,𝜃𝜃𝐺𝐺 ∼ 𝑒𝑒𝑖𝑖𝑖𝑖𝑚𝑚,𝜃𝜃𝐺𝐺 + 𝛼𝛼
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A free massive Weyl fermion in 4d
𝑚𝑚,𝜃𝜃𝐺𝐺 ∼ 𝑒𝑒𝑖𝑖𝑖𝑖𝑚𝑚,𝜃𝜃𝐺𝐺 + 𝛼𝛼

• For nonzero 𝑚𝑚 we can remove the anomaly, i.e. absorb the 
phase of 𝑚𝑚, in a redefinition: 𝜃𝜃𝐺𝐺 → 𝜃𝜃𝐺𝐺 − arg(𝑚𝑚).  But we 
cannot do it for all complex 𝑚𝑚.

• This can be described as an anomaly using the 5d term
𝑖𝑖∫ 𝛿𝛿 2 𝑚𝑚 𝑑𝑑2𝑚𝑚 𝐶𝐶𝑆𝑆𝑔𝑔

𝐶𝐶𝑆𝑆𝑔𝑔 is the gravitational Chern-Simons term.

Equivalently, this can be written as the 6d term
𝑖𝑖

192𝜋𝜋
∫ 𝛿𝛿 2 𝑚𝑚 𝑑𝑑2𝑚𝑚 𝑇𝑇𝑇𝑇(𝑅𝑅 ∧ 𝑅𝑅)

• Related discussion in [NS, Tachikawa, Yonekura].
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A free massive Weyl fermion in 4d
1

192𝜋𝜋
𝛿𝛿 2 𝑚𝑚 𝑑𝑑2𝑚𝑚 𝑇𝑇𝑇𝑇(𝑅𝑅 ∧ 𝑅𝑅)

Applications:
• A 2-parameter family of theories.  At some point in the 

complex 𝑚𝑚 plane the theory is not trivially gapped.
– For the free fermion this is trivial.  But the same conclusion 

in more complicated models, with additional fields and 
interactions.  Note, we do not need any global symmetry.

• Defects.  𝑚𝑚 ∼ 𝑥𝑥 + 𝑖𝑖𝑖𝑖 is a string along the 𝑧𝑧 axis.  As in 
[Jackiw, Rossi], the anomaly means that there are Majorana-
Weyl fermions (𝑐𝑐𝐿𝐿 − 𝑐𝑐𝑅𝑅 = 1/2) on the defect.   
– The same conclusion in a more complicated theory with 

more fields and interactions.
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• To study ordinary anomalies we couple every global symmetry 
to a classical background field and place the theory in an 
arbitrary spacetime.  Denote all these background fields by 𝐴𝐴.  
An anomaly is the statement that the partition function might 
not be gauge invariant or coordinate invariant.

• This is described by a higher dimensional classical (invertible) 
field theory for 𝐴𝐴.

• Similarly, we make all the coupling constants 𝜆𝜆 background 
fields and then the partition function might not be invariant 
under identifications in the space of coupling constants.

• This is described by a generalized anomaly theory – a higher 
dimensional classical (invertible) field theory for 𝐴𝐴 and 𝜆𝜆.

Conclusions
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• This anomaly theory is invariant under renormalization group 
flow. (More precisely, it can be deformed continuously).  
Therefore, it can be used, à la ‘t Hooft, to constrain the long-
distance dynamics and to test dualities.   
– For example, it can force the low-energy theory to have 

some phase transitions. 
• Defects are constructed by making 𝐴𝐴 and 𝜆𝜆 spacetime 

dependent.  Using these values in the anomaly theory, we 
find the anomaly of the theory along the defect.
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• We presented examples of these anomalies (and their 
consequences) in various number of dimensions.  The 
parameter space in the examples has one-cycles or two-
cycles.

• We have studied many other cases with related phenomena.
– 4d 𝑆𝑆𝑆𝑆 𝑁𝑁 , 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑁𝑁 , 𝑆𝑆𝑆𝑆(𝑁𝑁) with quarks

• There are many other cases, we have not yet studied.

Conclusions
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