Elliptic and genus one fibration structure of known Calabi-Yau threefolds

String Math 2019 Uppsala, Sweden July 2, 2019

# Washington (Wati) Taylor, MIT

Based in part on

arXiv: 1805.05907, 1809.05160, 1811.04947, 1907.xxxxx, Y-C. Huang, WT

and upcoming work in collaboration with various subsets of: L. Anderson, P. Berglund J. Gray, J. Halverson, Y. Huang, C. Long, P. Oehlmann

#### Outline

- 1. Calabi-Yau threefolds and elliptic fibers
- 2. Toric polytope fibrations
- 3. Triangulations
- 4. Mirror symmetry and elliptic fibrations

Calabi-Yau threefolds: manifolds used in superstring compactification physically:

- Ricci flat:  $R_{\mu\nu} = 0$  (solve vacuum Einstein equations)
- Kähler manifolds (complex structure compatible with SUSY) mathematically: trivial canonical class K = 0 (up to torsion)

Long studied by mathematicians and physicists

— Used in compactification of string theory:  $10D \rightarrow 4D, 6D, \ldots$ 

**Open Question:** 

Are there a finite number of topological types of Calabi-Yau threefolds?

Many large classes of CY3s have been constructed:

- CICY (complete intersection CYs): 7,890 [Candelas/Dale/Lutken/Schimmrigk]
- Toric hypersurface CY3s: 473.8M reflexive 4D polytopes [Kreuzer/Skarke]
- Generalized CICYs [Anderson/Apruzzi/Gao/Gray/Lee]
- Elliptic CY3s (this talk)

### Elliptic and genus one-fibered CY threefolds

An *elliptic* or *genus one fibered* CY3 *X*: A torus (fiber) at each  $p \in B_2$  $\pi : X \to B_2$ 

Elliptic:  $\exists$  section  $\sigma : B_2 \to X, \pi \sigma = \text{Id}$ 



• Elliptic Calabi-Yau threefold has Weierstrass model

$$y^2 = x^3 + fx + g$$
,  $f, g$  sections of  $\mathcal{O}(-4K_B), \mathcal{O}(-6K_B)$ 

- Elliptic CY3s have extra structure, more manageable mathematically
- Used for 6D F-theory construction (fiber  $\tau = 10D$  axiodilaton)
- Recently evidence has been accumulating that most known Calabi-Yau threefolds have elliptic/g1 structure (i.e. birationally equivalent to an elliptic or genus one fibered CY3)
- F-theory + math  $\Rightarrow$  global picture of { ECY3s }

### Classifying elliptic Calabi-Yau threefolds

∃ finite # of topological types of elliptic CY3s [Gross]
 Combining math + physics (F-theory), can systematically construct ECY3s

- Bases  $B_2$ : must be  $\mathbb{F}_m$ ,  $\mathbb{P}^2$ , Enriques or blow-ups [Grassi]
- Finite number of distinct strata in space of  $B_2$  Weierstrass models

"Algorithm" for constructing all ECY3s:

I. Construct bases by iterative blow-ups of  $\mathbb{F}_m$ ,  $\mathbb{P}^2$  [large  $h^{2,1} \checkmark$ ]

- II. Tune Weierstrass models
  - A. Codimension 1 singularities  $\leftrightarrow$  nonabelian G (Kodaira) [mostly  $\checkmark$  ]
  - B. Mordell-Weil rank  $\leftrightarrow U(1)^k \ [k \le 2 \checkmark]$
  - C. Discrete G ( $\sim$  multisections) [no systematics yet X]
  - D. Codim. 2 singularities  $\leftrightarrow$  matter [generic NA  $\checkmark$ , exotic,  $U(1) \times G'$  ?]

#### Systematic construction of bases



### Can systematically classify bases, bounded by non-Kodaira singularities (e.g. $C \cdot C < -12$ ) not allowed

New Hodge numbers for generic EF over non-toric bases at  $(h^{1,1}, h^{2,1}) = (29, 299), (48, 270), ...$ 

#### Toric hypersurface construction [Batyrev, Kreuzer/Skarke]

Toric variety: characterized by toric divisors  $D_i \leftrightarrow \text{rays } v_i \in \mathbb{Z}^d$ 

Anti-canonical class  $-K = \sum_i D_i$  (never compact CY)

Anti-canonical hypersurface  $\Rightarrow$  CY by adjunction

 $\nabla$  polytope: convex hull of vertices  $v_i$ 

 $\{\text{monomials}\} \leftrightarrow \text{lattice points in dual polytope } \nabla^* = \{w : w \cdot v \ge -1\}$ 

Batyrev:  $\nabla = \nabla^{**}$  reflexive  $\leftrightarrow 1$  interior point  $\leftrightarrow$  hypersurface CY generically smooth (avoids singularities)

Kreuzer-Skarke: constructed all 473.8M reflexive  $\nabla_4$ 

 $\nabla, \Delta$  describe mirror Calabi-Yau threefolds  $h^{1,1} \leftrightarrow h^{2,1}$ 

Symmetry in toric hypersurface construction early evidence for mirror symmetry

Example: Batyrev for generic elliptic curve in  $P^{2,3,1}$ 



Gives general Weierstrass ("Tate form") model for elliptic curve:

$$y^2 + a_1yx + a_3y = x^3 + a_2x^2 + a_4x + a_6$$

Completing square, cube  $\rightarrow$  standard (short) Weierstrass form

$$y^2 = x^3 + fx + g$$

Why likely a CY3 has an elliptic or genus one fiber?

*Theorem* (Oguiso/Wilson): A Calabi-Yau 3-fold *X*, *X* is genus one (or elliptically) fibered iff there exists a divisor  $D \in H^2(X, \mathbb{Q})$  that satisfies  $D^3 = 0, D^2 \neq 0$ , and  $D \cdot C \geq 0$  for all algebraic curves  $C \subset X$ .

Assuming "random" data for triple intersection form  $C_{ijk}$ , how likely is this to occur?

Possible obstructions:

A) Number theoretic (no solution to  $C_{ijk}d_id_jd_k = 0$  over integers)

B) Cone obstruction, no solution over reals when  $D \subset$  positive cone Consider each in turn Number theoretic obstructions

For example:

$$x^3 + x^2y + y^3 + 2z^3 + 4w^3 = 0$$

has no solutions over the integers  $\mathbb{Z}$  (or over  $\mathbb{Q}$ ); ( $\mathbb{Z}_2$  obstruction)

Mordell (1937) identified homogeneous degree d polynomial in  $d^2$  variables with obstruction

Subsequent conjectures:  $d^2$  is maximum number of variables with obstruction

Proven for d = 1, 2

Counterexample: quartic with 17 variables has obstruction!

Heath-Brown (1983): every non-singular cubic in  $\geq$  10 variables with rational coefficients has nontrivial rational zero.

Also proven for general cubic in  $\geq 16$  variables

Upshot: no number-theoretic obstruction when  $h^{1,1}(X) > 15$  (likely 9)

Cone obstructions: exponentially suppressed?

### Simple heuristic argument:

Assume cone has  $D = \sum_i d_i D_i, d_i \ge 0$ 

Look for positive solution of cubic  $\sum_{i,j,k} C_{ijk} d_i d_j d_k = 0$ 

Proceed by induction:

First, check M = 2,  $\sum_{i,j,k}^{M} C_{ijk} d_i d_j d_k = 0$ ~ cubic in two variables, has  $\geq 1$  real solution; 50% chance in cone

Add one variable: pick random other numbers in cone; probability solution in last variable is positive: 1/2, ...

 $\Rightarrow$  suggests probability  $\leq \sim 2^{-h^{1,1}}$  that no fiber exists

Very heuristic argument, depends on "large" Kaehler cone

Finding elliptic fibrations in known CY3's

CICYs analyzed by Anderson/Gao/Gray/Lee:

- 99.3% (7837/7890) of CICYs have "obvious" elliptic/g1 fibration
- Average number of inequivalent obvious fibrations: 9.85
- At least one fibration whenever  $h^{1,1} \ge 4$

#### How about toric hypersurface CY3s

With Y.-C. Huang have taken two systematic approaches:

A) Construct elliptic CY3s by choosing toric bases, tuning, and compare to KSB) Directly studying toric hypersurfaces and reflexive polytopes for fibrationsNext describe results of these two approaches

## Constructing elliptic CY3s and comparing to KS

Start with toric base, Tate tuning  $\sim$  "tops" of polytopes Can systematically construct tunings that should correspond to polytopes

Example: (11, 491) = generic EF over  $\mathbb{F}_{12}$ (12, 462) = generic EF over  $\mathbb{F}_{12}$ blown up at generic pt. (13, 433): can tune SU(2) on exceptional curve  $\rightarrow$  (14, 416) [Johnson/WT]



w/Huang: Systematically tuned models at  $(h^{1,1} \text{ or } h^{2,1} \ge 240)$ 

- Initial sieve gave all Hodge numbers in KS list except 18
- Checked remaining cases explicitly, all 18 elliptic fibered (some large tunings, non-flat fibrations, forced Mordell-Weil)
- Identified new SU(6) Tate tuning (with 3-index antisymmetric matter)

Upshot: tuning W. models over toric bases reproduces all large KS Hodge #'s

#### Simple toric fibrations:

 $abla_2 \subset 
abla, 
abla_2 \text{ reflexive}$ 

Only 16 reflexive  $\nabla_2$ 's (e.g. F-theory fibers:

[Braun, Braun/Grimm/Keitel, Klevers/Mayorga Pena/Oehlmann/Piragua/Reuter])



-1 curve  $C = D_i^{(2)}$ : satisfies  $-K \cdot C = C \cdot C + 2 = 1$ All but  $F_1 = \mathbb{P}^2, F_2 = \mathbb{F}_0 = \mathbb{P}^1 \times \mathbb{P}^1, F_4 = \mathbb{F}_2$  have -1 curves  $\Rightarrow$  toric sections Check explicitly for fibrations: scan all reflexive  $\nabla$  for  $\nabla_2 \subset \nabla$ 

For efficiency: start with  $L \in \nabla$ , V vertices of  $\Delta$ 

Define  $S_n = \{p \in L : \max_{v \in V} \langle p, v \rangle = n\}$ 

Necessary & sufficient condition for fiber  $\nabla_2 \subset \nabla$ , one of these conditions hold:

I 
$$\exists x, y \in S_1 : x \neq y$$
 and  $-x, -y \in S_1$   
II  $\exists x, y \in S_2 : -(x + y) \in S_1$  or  $-(x + y) \in S_2$   
III  $\exists x, y \in S_3 : -(x + y)/2 \in S_1$ .

Checked all 473.8 M polytopes

 $h^{1,1}$  or  $h^{2,1} \ge 140$ : Mathematica code [arXiv:1809.05160] All  $\nabla$ : Julia code (results to appear)

### Toric fibers

Upshot: all but 29,223 4D reflexive polytopes have 2D fiber  $\nabla_2 \subset \nabla$ 



Largest  $h^{2,1}$  without toric fiber: (140, 62) Those without toric fiber:  $h^{2,1} \sim 60$  as  $h^{1,1} \rightarrow 100$ . Why? Asymptotics at small  $h^{1,1}$ :

Probability that a CY3 is not g1/elliptic fibered  $\sim 2^{-h^{1,1}}$  for  $1 < h^{1,1} \leq \sim 10$ 

| $h^{1,1}$                  | 2     | 3     | 4     | 5     | 6     | 7     |
|----------------------------|-------|-------|-------|-------|-------|-------|
| # without fiber $\nabla_2$ | 23    | 91    | 256   | 562   | 872   | 1202  |
| Total #                    | 36    | 244   | 1197  | 4990  | 17101 | 50376 |
| %                          | 0.639 | 0.373 | 0.214 | 0.113 | 0.051 | 0.024 |
|                            |       |       |       |       |       |       |

## But there is a fat tail





Narrow Kähler cone? [Demirtas/Long/McAllister/Stillman]

Fibers and triangulations (work in progress)

Almost all KS polytopes have reflexive toric 2D subpolytopes

What does this mean about corresponding CY threefolds?

Heuristically, suggests elliptic/genus one fibrations

Consider triangulations (Fine, Regular, Star)  $\rightarrow$  smooth CY3s Is there always a compatible triangulation? [Rohsiepe]

For simple cases, all triangulations  $\rightarrow$  toric morphisms (good E/G1 fiber) Example: (2, 272); generic EF over  $\mathbb{P}^2$  (fiber  $F_{10}$ )



Single triangulation of  $\nabla$  and  $B_2$ ,  $\rightarrow$  toric morphism, elliptically fibered

### **Triangulations II**

Many triangulations lead to non-flat fibrations [Braun] (cf. also e.g. [Candelas/Diaconescu/Florea/Morrison/Rajesh, Lawrie/Schafer-Nameki, Dierigl/Oehlmann/Ruehle] re. non-flat fibrations in F-theory)

Example: (3, 243) generic EF over  $\mathbb{F}_1$  (fiber  $F_{10}$ )



Two triangulations of  $\nabla \Rightarrow 2$  CY3 phases 1) Good toric morphism, EF; 2) Good toric morphism, non-flat fiber

#### Triangulations III (work with Berglund)

In some cases FRS triangulation → singular base (cf. e.g. [Anderson/Grassi/Gray/Oehlmann]) singular bases in F-theory



Given "simple stacking" polytope with base over  $(-2, -3) \in \mathbb{P}^{2,3,1}$ , to find generic EF (fiber  $F_{10}$ ) over  $\mathbb{F}_3$  (w/ "non-Higgsable"  $A_2$  singularity): Need "vex" (non-convex) polytope [Berglund/Hubsch]

Not FRS triangulation but still CY3 phase connected by flops

#### **Triangulations IV**

In some cases, an FRS triangulation is incompatible with any toric morphism (work w/Halverson, Long)



For some polytopes there is no FRS triangulation compatible with toric morphism



## Triangulations V



But always ∃ fine (non-star) triangulation compatible w/ toric morphism → elliptic/genus one fibration in some phase non-convex polytope: non-Fano variety with rigid surface ⊂ CY3

## Algorithm:

- 1. Take rays  $v_i$  that project to vertices of base (always primitive)
- 2. Use all rays in fiber to make 2D, 3D, 4D cones (singular, compatible)
- 3. Refine by adding remaining rays to get non-star triangulation

Examples:





 $\rightarrow$  elliptic/genus one phase

#### Mirror symmetry

Mirror symmetry factorizes for many toric hypersurfaces!

If  $F = \nabla_2 \subset \nabla$  is a slice and  $\tilde{F} = \Delta_2 \subset \Delta$  is also a slice  $\Rightarrow$  Mirror symmetry factorizes

#### Simplest factorization:

Standard stacking on  $\mathbb{P}^{2,3,1} \leftrightarrow$  Tate form Weierstrass model

Mirror of generic elliptic fibration over B = ef over  $\tilde{B}$  (may be tuned):

$$B \to \tilde{B} \sim \Sigma(-6K_B), \nabla_2 = \Delta_2 = \mathbb{P}^{2,3,1}$$

(65k examples in KS database)



## Example: generic elliptic fibration on $\mathbb{P}^2$ (2, 272)



Hodge numbers (2, 272)

$$\begin{split} h^{1,1}(B) &= 1 \\ G &= 1 \\ h^{1,1}(X) &= h^{1,1}(B) + \operatorname{rk} G + 1 = 2 \\ h^{2,1}(X) &= 301 - 29h^{1,1}(B) - \operatorname{dim} M_{nh} = 272 \end{split}$$

Hodge numbers (272, 2) (toric rays:  $\vec{w} \cdot \vec{v} \ge -6$ ,  $\forall \vec{v} \in \Sigma_B, \vec{w}$  primitive)

$$\begin{split} h^{1,1}(B) &= 106 + 3 = 109 \\ G &= \frac{E_8}{9} \times F_4^{-9} \times (G_2 \times SU(2))^{18} \\ h^{1,1}(X) &= h^{1,1}(B) + \text{rk} \ G + 1 = 272 \\ h^{2,1}(X) &= 301 - 29h^{1,1}(B) + \dim G - \dim M_{nb} = 2 \end{split}$$

Example: self-mirror generic elliptic fibration (251, 251)



Toric self-intersections:

 $h^{1,1}(B) = 97 + 1 = 98$   $G = E_8^{9} \times F_4^{8} \times (G_2 \times SU(2))^{16} \text{ (rank = 152)}$   $h^{1,1}(X) = h^{1,1}(B) + \text{rk } G + 1 = 251$  $h^{2,1}(X) = 301 - 29h^{1,1}(B) + \dim G - \dim M_{nh} = 251$ 

### Factorized mirror symmetry: more general structures

- $\bullet$  Also works for "tuned" Tate models  $\leftrightarrow$  reduction on  $\Delta$
- Works for other fibers, bundle structures

e.g. 
$$B = \mathbb{P}^2$$
,  $F = F_2$ ; base stacked over vertex:  $H = (4, 94)$   
 $\tilde{B} \sim -2K_B$ ,  $\tilde{F} = F_{15}$ ;  $H = (94, 4)$   
 $(\tilde{B}: (-3, -1, -4, -1, -4, -1, -3, -1, -4, -1, -4, -1, -4, -1))$ 



(mirror symmetry of fibers:

discussed in [Klevers/Mayorga Pena/Oehlmann/Piragua/Reuter])

Mirror symmetry: weak Fano base + fiber (w/ Oehlmann)

Interesting class of cases:

Fiber  $F_i$ , base  $F_j$  both reflexive 2D polytopes (weak Fano/generalized dP)  $F_i \oplus F_j$  mirror to  $\tilde{F}_i \otimes \tilde{F}_j$ : ~ Schoen (19, 19)





 $X: (8,35); G = \mathbb{Z}_3 \text{ over } dP_6 \leftrightarrow \tilde{X}: (35,8) \ G = SU(9)^3, \text{ w/ } 9 \times (4,6) \text{ points}$ Higgs  $SU(9)^3 \rightarrow SU(8)^3 \times U(1) \rightarrow SU(3)^3 \times U(1)^6$ : fiber  $gdP_6 \rightarrow \mathbb{P}^2$  $(35,8) \rightarrow (33,9) \rightarrow \dots$ 

Non-toric: Higgs 2 more times  $\rightarrow$  Schoen (19, 19)

#### Factorize mirror symmetry for CY fourfolds

Same story for fourfolds:

 $F = F_i \rightarrow \tilde{F} = F_{17-i}$  (except  $\tilde{F} = F_i$  for i = 7, 8, 9, 10)  $B \rightarrow \tilde{B} \sim -nK_B$  for vertex stacking,

Example:  $B = \mathbb{P}^3$  standard stacking ( $F = \mathbb{P}^{2,3,1} = F_{10}$ )

Rays in *B*: primitive lattice points in tetrahedron: w/vertices (-6, -6, -6), (18, -6, -6), (-6, 18, -6), (-6, -6, 18)

 $G = E_8^{34} \times F_4^{96} \times G_2^{256} \times SU(2)^{384}$ 

- (Exponentially) many triangulations
- Note: common endpoint from random blow-up sequence [WT/Wang]

### Conclusions

- All but 29k of 483M toric hypersurface Calabi-Yau threefolds have elliptic/genus one structure (birational to elliptic/g1)
- In many cases mirror symmetry factorizes between fiber and base