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Mirror Symmetry
Around the 1980’s string theorists observed that Calabi-Yau manifolds
often come in pairs X, X̌, which are “equivalent” from the point of
view of string compactifications

More precisely, “type IIB” string theory compactified on X is
“equivalent” to “type IIA” string theory compactified on X̌ and vice
versa.
Mirror symmetry has attracted a lot of attention in mathematics since
Candelas et al. showed how it could be used to count rational curves
on the quintic.
In particular, mirror symmetry interchanges complex geometry and
symplectic geometry.
Strominger-Yau-Zaslow (SYZ) argued that mirror symmetry could be
interpreted as T-duality.
Namely, in certain limits, CY manifolds should admit fibrations by
special Lagrangian tori, and the mirror CY is constructed by dualizing
the fibers.
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view of string compactifications
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view of string compactifications
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Mirror symmetry has attracted a lot of attention in mathematics since
Candelas et al. showed how it could be used to count rational curves
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In particular, mirror symmetry interchanges complex geometry and
symplectic geometry.
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Homological Mirror Symmetry
Konstevich proposed a Homological Mirror Symmetry, which is based
on relating certain categories.

The idea is the following:
Type IIA/B string theories come with a collection of “D-branes”,
which we can think of naively as the particles that live in the theory.
In type IIB string theory, the “D-branes” are associated with complex
geometry, while in type IIA, they are associated with symplectic
geometry.
Since both theories describe the same physics, the particles must be
the same.
Kontsevich’s proposal is that mirror CYs should have

DbCoh(X) ∼ DπFuk(X̌).

The SYZ proposal gives a geometric mechanism for this equivalence
using T-duality and a real Fourier-Mukai transform.
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geometry, while in type IIA, they are associated with symplectic
geometry.
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Homological Mirror Symmetry

In Kontsevich’s proposal, the categories DbCoh(X) (resp. DπFuk(X̌))
can be thought of as encoding all the possible particles.

Not all particles are realistic. The realistic, “stable” particles are those
satisfying the equations of motion coming from a some Lagrangian
action functional.
The expectation is that every particle should decay, essentially
uniquely, into stable constituent pieces, which form the building
blocks of all particles.
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satisfying the equations of motion coming from a some Lagrangian
action functional.
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In Kontsevich’s proposal, the categories DbCoh(X) (resp. DπFuk(X̌))
can be thought of as encoding all the possible particles.
Not all particles are realistic. The realistic, “stable” particles are those
satisfying the equations of motion coming from a some Lagrangian
action functional.
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uniquely, into stable constituent pieces, which form the building
blocks of all particles.
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Not all particles are realistic. The realistic, “stable” particles are those
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In Kontsevich’s proposal, the categories DbCoh(X) (resp. DπFuk(X̌))
can be thought of as encoding all the possible particles.
Not all particles are realistic. The realistic, “stable” particles are those
satisfying the equations of motion coming from a some Lagrangian
action functional.
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Mirror Symmetry: The Symplectic Side

Notation: (X2n, J,Ω, ω) Calabi-Yau, complex structure J, holomorphic
volume form Ω, and Kähler form ω.

Definition (Harvey-Lawson, ’82)
An n-dimensional submanifold L ↪→ X is

Lagrangian if ω|L = 0.
Special Lagrangian (sLag) if there is a constant θ̂ ∈ R such that

Im(e−
√
−1θ̂Ω)|L = 0.
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Notation: (X2n, J,Ω, ω) Calabi-Yau, complex structure J, holomorphic
volume form Ω, and Kähler form ω.

Definition (Harvey-Lawson, ’82)
An n-dimensional submanifold L ↪→ X is

Lagrangian if ω|L = 0.
Special Lagrangian (sLag) if there is a constant θ̂ ∈ R such that
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Mirror Symmetry: The Symplectic Side

The special Lagrangian equation is the equation of motion for a
‘stable’ particle.

Very roughly, DπFuk(X) parametrizes hamiltonian deformation classes
of Lagrangian submanifolds of (X, ω). A class [L] is ‘stable’ if it
contains a special Lagrangian representative.
Special Lagrangians are automatically volume minimizing in their
homology class, so provide high codimension minimal submanifolds.
In a general Calabi-Yau, we do not know the existence of even one
special Lagrangian!
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The special Lagrangian equation is the equation of motion for a
‘stable’ particle.
Very roughly, DπFuk(X) parametrizes hamiltonian deformation classes
of Lagrangian submanifolds of (X, ω).

A class [L] is ‘stable’ if it
contains a special Lagrangian representative.
Special Lagrangians are automatically volume minimizing in their
homology class, so provide high codimension minimal submanifolds.
In a general Calabi-Yau, we do not know the existence of even one
special Lagrangian!
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The special Lagrangian equation is the equation of motion for a
‘stable’ particle.
Very roughly, DπFuk(X) parametrizes hamiltonian deformation classes
of Lagrangian submanifolds of (X, ω). A class [L] is ‘stable’ if it
contains a special Lagrangian representative.

Special Lagrangians are automatically volume minimizing in their
homology class, so provide high codimension minimal submanifolds.
In a general Calabi-Yau, we do not know the existence of even one
special Lagrangian!
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The special Lagrangian equation is the equation of motion for a
‘stable’ particle.
Very roughly, DπFuk(X) parametrizes hamiltonian deformation classes
of Lagrangian submanifolds of (X, ω). A class [L] is ‘stable’ if it
contains a special Lagrangian representative.
Special Lagrangians are automatically volume minimizing in their
homology class, so provide high codimension minimal submanifolds.

In a general Calabi-Yau, we do not know the existence of even one
special Lagrangian!
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‘stable’ particle.
Very roughly, DπFuk(X) parametrizes hamiltonian deformation classes
of Lagrangian submanifolds of (X, ω). A class [L] is ‘stable’ if it
contains a special Lagrangian representative.
Special Lagrangians are automatically volume minimizing in their
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Mirror Symmetry: The Complex Side

D-branes are parametrized by DbCoh(X). Roughly, these are
complexes of coherent sheaves.

Consider a line bundle L → V, where V ⊂ X is a complex subvariety..
The equations of motion for these objects were derived independently
by Marino-Minasian-Moore-Strominger and Leung-Yau-Zaslow.
The equation is the deformed Hermitian-Yang-Mills equation.

Definition (dHYM equation)
A holomorphic line bundle L → (V, ω|V) solves the deformed
Hermitian-Yang-Mills equation if it admits a smooth hermitian metric h
such that F(h) = −∂∂ log h solves

Im(e−iθ̂(ω − F)dimC V) = 0, θ̂ ∈ R

Re(e−iθ̂(ω − F)dimC V) > 0
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PDEs and Algebraic Geometry
Going back to work of Douglas (2000), and Thomas-Yau (2001), it
has long been conjectured that the existence of special Lagrangians
(or solutions of dHYM) is equivalent to a purely algebraic notion of
stability.

This proposal is based on the idea that, in certain limits, a special
Lagrangian should be mirror to a holomorphic bundle E with
Hermitian-Yang-Mills connection.
By the Donalson-Uhlenbeck-Yau Theorem, this is equivalent to E
being slope stable.
The present version of this folklore conjecture is

Conjecture (Folklore)
A Lagrangian submanifold L ↪→ (X, ω) (resp. holomorphic line bundle
L → (X, ω)) can be deformed to a special Lagrangian (resp. admits a
hermitian metric solving the dHYM equation) if and only if [L] is stable in
DπFuk(X) (resp. DbCoh(X)) in the sense of Bridgeland.
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PDEs and Algebraic Geometry

The present version of this folklore conjecture is

Conjecture (Folklore)
A Lagrangian submanifold L ↪→ (X, ω) (resp. holomorphic line bundle
L → (X, ω)) can be deformed to a special Lagrangian (resp. admits a
hermitian metric solving the dHYM equation) if and only if [L] is stable in
DπFuk(X) (resp. DbCoh(X)) in the sense of Bridgeland.

On the symplectic side Joyce has made detailed conjectures
concerning Bridgeland stability and the Lagrangian mean curvature
flow.
NOTE: Bridgeland stability conditions are not known to exist in
general, so this conjecture is really two conjectures.
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concerning Bridgeland stability and the Lagrangian mean curvature
flow.
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L → (X, ω)) can be deformed to a special Lagrangian (resp. admits a
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The deformed Hermitian-Yang-Mills equation

Fix a Kähler manifold (X, ω), and let a ∈ H1,1(X,R) be another
cohomology class.

Question
When can we find α ∈ a such that

Im
(

e−iζ(ω + iα)n
)
= 0 eiζ ∈ S1?

where e
√
−1ζ is determined by [ω], a∫

X
(ω +

√
−1α)n ∈ R>0e

√
−1ζ .

This is equivalent to the equation for line bundles by taking a = −c1(L)
and α = −

√
−1F(h).
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The deformed Hermitian-Yang-Mills equation
We can rewrite the dHYM equation in terms of the relative
endomorphism K of T1,0(X) given by

K := ωjk̄αk̄ℓ
∂

∂zj ⊗ dzℓ.

Define
Θω(α) =

∑
j
arctan(λj)

where λj are the eigenvalues of K.
The dHYM equation is

Θω(α) = θ̂

for a constant θ̂ ∈ (−nπ
2 , n

π
2 ), determined ( mod 2π) by cohomology:

e
√
−1ζ = e

√
−1θ̂.
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The deformed Hermitian-Yang-Mills equation

Recall that a graph Rn ∋ x 7→ (x,∇f(x)) ∈ R2n = Cn is special
Lagrangian if and only if

n∑
i=1

arctan(λi) = const

where λi are the eigenvalues of ∇2f.

The dHYM equation is therefore a natural, complex (and global
version) of the graphical sLag equation.
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The deformed Hermitian-Yang-Mills equation

Recall that a graph Rn ∋ x 7→ (x,∇f(x)) ∈ R2n = Cn is special
Lagrangian if and only if

n∑
i=1

arctan(λi) = const

where λi are the eigenvalues of ∇2f.
The dHYM equation is therefore a natural, complex (and global
version) of the graphical sLag equation.
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A Variational Approach

Collins-Jacob-Yau gave necessary and sufficient analytic conditions for
the existence of a solution to dHYM when θ̂ > (n − 2)π2 .

To connect with the folklore conjecture we want algebraic conditions.
Fix α0 ∈ a. By the ∂∂-lemma, any α ∈ a can be written as
α0 +

√
−1∂∂φ for some φ : X → R.

Based on ideas going back to Thomas (2001) and Solomon (2012) in
symplectic geometry, we are lead to consider the space

Hθ̂ = {φ ∈ C∞(X,R) : |Θω(αφ)− θ̂| < π

2 }

where αφ := α0 +
√
−1∂∂φ, and θ̂ ∈ (−nπ

2 ,
nπ
2 ) satisfies

e
√
−1θ̂ = e

√
−1ζ .
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A Variational Approach

Collins-Jacob-Yau gave necessary and sufficient analytic conditions for
the existence of a solution to dHYM when θ̂ > (n − 2)π2 .
To connect with the folklore conjecture we want algebraic conditions.

Fix α0 ∈ a. By the ∂∂-lemma, any α ∈ a can be written as
α0 +

√
−1∂∂φ for some φ : X → R.

Based on ideas going back to Thomas (2001) and Solomon (2012) in
symplectic geometry, we are lead to consider the space

Hθ̂ = {φ ∈ C∞(X,R) : |Θω(αφ)− θ̂| < π

2 }

where αφ := α0 +
√
−1∂∂φ, and θ̂ ∈ (−nπ
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Collins-Jacob-Yau gave necessary and sufficient analytic conditions for
the existence of a solution to dHYM when θ̂ > (n − 2)π2 .
To connect with the folklore conjecture we want algebraic conditions.
Fix α0 ∈ a. By the ∂∂-lemma, any α ∈ a can be written as
α0 +

√
−1∂∂φ for some φ : X → R.

Based on ideas going back to Thomas (2001) and Solomon (2012) in
symplectic geometry, we are lead to consider the space
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the existence of a solution to dHYM when θ̂ > (n − 2)π2 .
To connect with the folklore conjecture we want algebraic conditions.
Fix α0 ∈ a. By the ∂∂-lemma, any α ∈ a can be written as
α0 +

√
−1∂∂φ for some φ : X → R.

Based on ideas going back to Thomas (2001) and Solomon (2012) in
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Collins-Jacob-Yau gave necessary and sufficient analytic conditions for
the existence of a solution to dHYM when θ̂ > (n − 2)π2 .
To connect with the folklore conjecture we want algebraic conditions.
Fix α0 ∈ a. By the ∂∂-lemma, any α ∈ a can be written as
α0 +

√
−1∂∂φ for some φ : X → R.

Based on ideas going back to Thomas (2001) and Solomon (2012) in
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A Variational Approach

By the maximum principle, there is at most one value of
θ̂ ∈ (−nπ

2 ,
nπ
2 ) for which Hθ̂ is non-empty.

If H is empty for all θ̂, then no solution of dHYM exists.
H can be made into an infinite dimensional Riemannian manifold.
If φ ∈ H, then TφH = C∞(X,R), and we define

ψ1, ψ2 ∋ TφH 7→ ⟨ψ1, ψ2⟩φ =

∫
X
ψ1ψ2Re

(
e−

√
−1θ̂(ω +

√
−1αφ)

n
)

From now on assume θ̂ > (n − 1)π2 .
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2 ,
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2 ) for which Hθ̂ is non-empty.
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A Variational Approach

By the maximum principle, there is at most one value of
θ̂ ∈ (−nπ

2 ,
nπ
2 ) for which Hθ̂ is non-empty.

If H is empty for all θ̂, then no solution of dHYM exists.
H can be made into an infinite dimensional Riemannian manifold.
If φ ∈ H, then TφH = C∞(X,R), and we define

ψ1, ψ2 ∋ TφH 7→ ⟨ψ1, ψ2⟩φ =

∫
X
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(
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A Variational Approach

Associated to the Riemannian structure is a notion of geodesics.

(to
be discussed. But first, the upshot.)
Consider the following 1-form on H. Given ψ ∈ TφH define

δJ (φ)(ψ) := −
∫

X
ψIm

(
e−

√
−1θ̂(ω +

√
−1αφ)

n
)

Theorem (Collins-Yau, Solomon)
δJ (φ)(ψ) integrates to a well-defined function J : H → R with the
property that

1 J has a critical point at a solution of dHYM.
2 J is convex along (smooth) geodesics in H.
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Associated to the Riemannian structure is a notion of geodesics.(to
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A Variational Approach

Associated to the Riemannian structure is a notion of geodesics.(to
be discussed. But first, the upshot.)
Consider the following 1-form on H. Given ψ ∈ TφH define
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ψIm
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A Variational Approach

Associated to the Riemannian structure is a notion of geodesics.(to
be discussed. But first, the upshot.)
Consider the following 1-form on H. Given ψ ∈ TφH define

δJ (φ)(ψ) := −
∫

X
ψIm

(
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√
−1θ̂(ω +
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−1αφ)
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)
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A Variational Approach

Associated to the Riemannian structure is a notion of geodesics.(to
be discussed. But first, the upshot.)
Consider the following 1-form on H. Given ψ ∈ TφH define

δJ (φ)(ψ) := −
∫

X
ψIm

(
e−

√
−1θ̂(ω +

√
−1αφ)

n
)

Theorem (Collins-Yau, Solomon)
δJ (φ)(ψ) integrates to a well-defined function J : H → R with the
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2 J is convex along (smooth) geodesics in H.
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A Variational Approach

To prove that there is a solution of dHYM it (formally) suffices to show J
has a critical point.

We have the following picture.

Hb
φdHYM

The distinguishing feature is the slope of J near “∂H”.
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A Variational Approach

To prove that there is a solution of dHYM it (formally) suffices to show J
has a critical point. We have the following picture.

H

b
φdHYM

The distinguishing feature is the slope of J near “∂H”.
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A Variational Approach

To prove that there is a solution of dHYM it (formally) suffices to show J
has a critical point. We have the following picture.

Hb
φdHYM

The distinguishing feature is the slope of J near “∂H”.
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A Variational Approach

To prove that there is a solution of dHYM it (formally) suffices to show J
has a critical point. We have the following picture.

Hb
φdHYM

The distinguishing feature is the slope of J near “∂H”.
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A Variational Approach

To prove that there is a solution of dHYM it (formally) suffices to show J
has a critical point. We have the following picture.

Hb
φdHYM

The distinguishing feature is the slope of J near “∂H”.
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A Variational Approach

To connect this picture with the folklore conjecture we will do the
following three steps:

1 Establish the existence of (sufficiently regular) geodesics in the space
H.

2 Make sense of some points on “∂H”, and their connection with
algebraic geometry.

3 Produce geodesics going to “∂H” and evaluate the limit slope of J
in terms of algebraic invariants.
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A Variational Approach

To connect this picture with the folklore conjecture we will do the
following three steps:

1 Establish the existence of (sufficiently regular) geodesics in the space
H.

2 Make sense of some points on “∂H”, and their connection with
algebraic geometry.

3 Produce geodesics going to “∂H” and evaluate the limit slope of J
in terms of algebraic invariants.
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A Variational Approach

To connect this picture with the folklore conjecture we will do the
following three steps:

1 Establish the existence of (sufficiently regular) geodesics in the space
H.

2 Make sense of some points on “∂H”, and their connection with
algebraic geometry.

3 Produce geodesics going to “∂H” and evaluate the limit slope of J
in terms of algebraic invariants.
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A Variational Approach

To connect this picture with the folklore conjecture we will do the
following three steps:

1 Establish the existence of (sufficiently regular) geodesics in the space
H.

2 Make sense of some points on “∂H”, and their connection with
algebraic geometry.

3 Produce geodesics going to “∂H” and evaluate the limit slope of J
in terms of algebraic invariants.
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A Variational Approach

To connect this picture with the folklore conjecture we will do the
following three steps:

1 Establish the existence of (sufficiently regular) geodesics in the space
H.

2 Make sense of some points on “∂H”, and their connection with
algebraic geometry.

3 Produce geodesics going to “∂H” and evaluate the limit slope of J
in terms of algebraic invariants.
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The geodesic equation in H: Step 1
To introduce the geodesic equation it is convenient to introduce the
manifold

X = X × {e−1 ⩽ |t| ⩽ 1} ⊂ X × C πX−→ X.

Let
√
−1DD denote the complex hessian on X , and

√
−1∂∂ the complex

hessian on X.
Lemma
Suppose φ0, φ1 ∈ H. A geodesic segment φ(x, s) ∈ H with φ(x, 0) = φ0,
φ(x, 1) = φ1 is equivalent (by setting s = − log |t|) to a function
φ : X → R which is S1 invariant (ie. φ(x, t) = φ(x, |t|)) and solving

Im
[
e−

√
−1θ̂

(
π∗Xω +

√
−1

(
π∗Xα+

√
−1DDφ

))n+1
]
= 0 (1.1)

Re
[
e−

√
−1θ̂

(
ω +

√
−1

(
α+

√
−1∂∂φ

))n]
> 0

and with φ(x, 1) = φ0(x), φ(x, e−1) = φ1.
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hessian on X.
Lemma
Suppose φ0, φ1 ∈ H. A geodesic segment φ(x, s) ∈ H with φ(x, 0) = φ0,
φ(x, 1) = φ1 is equivalent (by setting s = − log |t|) to a function
φ : X → R which is S1 invariant (ie. φ(x, t) = φ(x, |t|)) and solving

Im
[
e−

√
−1θ̂

(
π∗Xω +

√
−1

(
π∗Xα+

√
−1DDφ

))n+1
]
= 0 (1.1)

Re
[
e−

√
−1θ̂

(
ω +

√
−1

(
α+

√
−1∂∂φ

))n]
> 0

and with φ(x, 1) = φ0(x), φ(x, e−1) = φ1.
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To introduce the geodesic equation it is convenient to introduce the
manifold

X = X × {e−1 ⩽ |t| ⩽ 1} ⊂ X × C πX−→ X.
Let

√
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√
−1∂∂ the complex
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(ie. φ(x, t) = φ(x, |t|)) and solving

Im
[
e−

√
−1θ̂

(
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√
−1

(
π∗Xα+

√
−1DDφ

))n+1
]
= 0

(1.2)
Re
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√
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√
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√
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))n]
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S.-T. Yau Mirror Symmetry June 1, 2019 20 / 42



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The geodesic equation in H: Step 1
The geodesic equation is a fully nonlinear, degenerate elliptic
equation.

The ε-geodesic equation is a fully nonlinear elliptic regularization of
the geodesic equation.
A real analogue of the geodesic equation has been studied by many
authors (Rubinstein, Solomon, Darvas, Harvey-Lawson). They prove
the existence of continuous solutions.
For geometric applications we need more regularity.

Theorem (Collins-Yau)
Suppose θ̂ > (n − 1)π2 . Then

1 For any two functions φ0, φ1 ∈ H there exists a C1,α solution φ(x, t)
of the geodesic equation with boundary data φ0, φ1.

2 The function J can be defined, and is convex along φ(x, t).
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the geodesic equation.
A real analogue of the geodesic equation has been studied by many
authors (Rubinstein, Solomon, Darvas, Harvey-Lawson). They prove
the existence of continuous solutions.
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Some other interesting functionals

In addition to J , there is a whole S1 worth of interesting functionals,
generated by the functional CYC : H → C whose derivative is

δCYC(φ)(ψ) =

∫
X
ψ(ω +

√
−1αφ)

n.

Proposition
Suppose that θ̂ ∈ ((n − 1)π2 , n

π
2 ). Along a geodesic we have

1 J = −Im(e−
√
−1θ̂CYC(φ)) is convex,

2 C = Re(e−
√
−1θ̂CYC(φ)) is affine,

3 Z = e−
√
−1nπ

2 CYC has concave real and imaginary parts.
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Model curves and algebraic geometry: Step 2
We now construct curves in H going to “∂H”.

Fix the following data. Let

J0 ⊂ J1 ⊂ · · · ⊂ Jr−1 ⊂ Jr = OX

be a nested family of coherent ideal sheaves on X. Locally

Jℓ = (fℓ,1, . . . , fℓ,Nℓ
) ⊂ OX

for fℓ,k holomorphic functions. Following Demailly-Paun we can construct
an S1 invariant function ψ : X → R modelled locally on

ψ(x, t) = 1
2π log(

r−1∑
ℓ=0

|t|2ℓ
Nℓ∑

k=1
|fℓ,k|2 + |t|2r)

naturally associated with the flag ideal I :=
⊕r

ℓ=0 tℓJℓ ⊂ OX ⊗ C[t].
Note: ψ(x, 0) is singular on Supp(J0).
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Jℓ = (fℓ,1, . . . , fℓ,Nℓ
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ψ(x, t) = 1
2π log(
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Nℓ∑
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We now construct curves in H going to “∂H”. Fix the following data. Let

J0 ⊂ J1 ⊂ · · · ⊂ Jr−1 ⊂ Jr = OX

be a nested family of coherent ideal sheaves on X. Locally

Jℓ = (fℓ,1, . . . , fℓ,Nℓ
) ⊂ OX

for fℓ,k holomorphic functions. Following Demailly-Paun we can construct
an S1 invariant function ψ : X → R modelled locally on

ψ(x, t) = 1
2π log(
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Model curves and algebraic geometry: Step 2
For any φ ∈ H, we can find δ > 0 sufficiently small so that
Φ(x, |t|) := φ(x) + δψ(x, |t|) ∈ H for each t.

This produces a curve in Φ(x, |t|) ∈ H, which becomes singular as
|t| → 0. We call this a model curve associated to the flag ideal
I ⊂ OX ⊗ C[t].
The idea is to connect a point φ0 to Φ(x, |t|) by a geodesic for all
0 < |t| ≪ 1.

H
φ
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Evaluating the limit slope: step 3

The limit slope of the J , C,Z functionals can be computed by hand,
after passing to a log-resolution of singularities of the flag ideal.

To compare with Bridgeland stability, let us assume that a = c1(L).
Using the convexity/concavity properties of the J , C,Z functionals
along geodesics, we can produce algebro-geometric obstructions to
existence of solutions.
Let us just consider a special case.
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Evaluating the limit slope: step 3

The simplest case of this formula is when I = IV + (t), for IV the ideal
sheaf of a (reduced, irreducible) subvariety V ⊂ X, and we extract
only the dominant term as δ → 0.

In this case, let

ZV(L) = −
∫

V
e−

√
−1ωch(L), ZX(L) = −

∫
X

e−
√
−1ωch(L)

Then, if L admits a solution of dHYM with θ̂ ∈ ((n − 1)π2 , n
π
2 ), we

must have Im(ZV(L)) > 0, and Im
(

ZV(L)
ZX(L)

)
> 0.

If Im(ZV(L)) ⩽ 0, then H is empty.
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Evaluating the limit slope: step 3

It is easiest to see this pictorially.

Theorem (Collins-Yau)

ZX(L)

ZV(L) L is not obstructed
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Evaluating the limit slope: step 3

It is easiest to see this pictorially.
Theorem (Collins-Yau)

ZX(L)ZV(L)

L is obstructed
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Evaluating the limit slope: step 3

It is easiest to see this pictorially.
Theorem (Collins-Yau)

ZX(L)

ZV(L)

H is empty
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Sufficiency?

Conjecture (Collins-Yau)
The inequalities involving ZX(L),ZV(L) for all V ⊂ X (plus certain Chern
number inequalities) are sufficient to guarantee the existence of a solution.

The conjecture is true in dimension 2 (Collins-Jacob-Yau).
The conjecture is true for the “small radius limit” of the equation
when (X, ω) is toric, and L is ample (Collins-Székelyhidi).
In the large radius limit, and even for higher rank bundles, this
reduces to the Donaldson-Uhlenbeck-Yau Theorem.
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Relation to the Bridgeland stability framework

Let’s briefly (and vaguely) recall the notion of a Bridgeland stability
condition in the case of interest (on DbCoh(x)).

First one needs a central charge.For mirror symmetry, one proposed
central charge is the the “Douglas-Bridgeland” central charge

DbCoh(X) ∋ E 7→ ZDBr(E) := −
∫

X
e−

√
−1ωch(E) ∈ C

A Bridgeland stability condition DbCoh(X) is, (very roughly), a lift of
the angle of ZDBr(E) to R for “enough” objects in DbCoh(X).
That is, an assignment to E ∈ DbCoh(X) of a phase φ(E), so that

ZDBr(E) ∈ R>0e
√
−1φ(E)
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Relation to the Bridgeland stability framework
Definition
An object A ∈ DbCoh(X), satisfying φ(A) ∈ (0, π] is Bridgeland stable if
for any object B with φ(B) ∈ (0, π] with A ↠ B we have

φ(B) > φ(A).

ZDBr(A)

ZDBr(B) Stable
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Relation to the Bridgeland stability framework
Definition
An object A ∈ DbCoh(X), satisfying φ(A) ∈ (0, π] is Bridgeland stable if
the following holds. For any object B with φ(B) ∈ (0, π], with A ↠ B we
have

φ(B) > φ(A).

ZDBr(A)
ZDBr(B)

Unstable
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Relation to the Bridgeland stability framework

Definition
An object A ∈ DbCoh(X), satisfying φ(A) ∈ (0, π] is Bridgeland stable if
the following holds. For any object B with φ(B) ∈ (0, π], with A ↠ B we
have

φ(B) > φ(A).

The obstructions we obtained by our variational framework can be
regarded as arising from the surjections

L ↠ L ⊗OV

where OV is the skyscraper sheaf supported on V.

BUT

ZDBr(L ⊗OV) ̸= ZV(L)

in general.
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have
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The obstructions we obtained by our variational framework can be
regarded as arising from the surjections
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Relation to the Bridgeland stability framework

Strictly speaking, to make our condition completely algebraic, we
need to determine the constant θ̂ appearing on the right-hand side of
the dHYM equation algebraically.

This is done by considering

γ(t) := −
∫

X
e−

√
−1tωch(L)

as t runs from +∞ to 1.
In this case

θ̂(L) = Winding Angle γ(t).

provided γ(t) does not pass through the origin.
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the dHYM equation algebraically.
This is done by considering

γ(t) := −
∫

X
e−

√
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Relation to the Bridgeland stability framework

Always defined in dimensions 1 (trivial) and dimension 2 (Hodge
Index Theorem).

Not always defined in dimension ⩾ 3 since γ(t) can pass through the
origin! Examples occur on BlpP3.

Theorem (Collins-Xie-Yau)
Assume dimX = 3. If L → X has a solution of dHYM with θ̂(L) ∈ (π2 ,

3π
2 ),

then γ(t) does not pass through the origin. This follows from the Chern
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Applications in symplectic geometry

By applying SYZ mirror symmetry we can apply our results to the
existence problem for special Lagrangians in certain situations.

If (X, ω) is toric, mirror symmetry has been extended to this situation
by Batryev, Givental, Kontsevich, Hori-Vafa, and many others.
The SYZ mirror of a toric Fano manifold is a Landau-Ginzburg model
(Y,W).
Y is an open Calabi-Yau manifold obtained as a special Lagrangian
torus fibration Y → P over an open, convex polytope P ⊂ Rn.
W : Y → C is a holomorphic function called the super-potential.
A holomorphic line bundle L → (X, ω) with a metric h ∈ H is
transformed to a almost calibrated (a.c) Lagrangian L̂ ⊂ Y.
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Applications in symplectic geometry

The problem of finding special Lagrangian sections of Y is equivalent
to solving the graphical sLag equation with certain singular boundary
data.

Under this correspondence the J functional becomes a functional on
the space of almost calibrated (a.c) Lagrangians originally discovered
by Solomon.
Our degenerations/geodesics in the space of metrics in H give rise to
degenerations/geodesics in the space of a.c. Lagrangians.
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Applications in symplectic geometry

For example, consider O(−k) → P1, and consider the degeneration
corresponding to

I = (Z2
1Z2) + (t) ⊂ OP1 ⊗ C[t].

We get a one parameter family of Lagrangians in (0, 2)× R

(0, 2) ∋ y 7→ −ky − δ
y2(2 − y)(4 − 3y)
y2(2 − y) + 8|t|2 .

In this case Y = (0, 2)× R/Z.
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Applications to symplectic geometry

Under the degeneration, the Lagrangian “bubbles off” to factors
proportional to the fiber.

Some complications arise from the fact that the fibers over {0}, {2}
are not in the manifold.
This should be resolved by considering certain mapping cones in the
Fukaya category.
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Future Directions

It will be important (but difficult) to extend our work to higher rank
bundles, and bundles with lower phase.

Understand fully the obstructions we produce in Landau-Ginzburg
models, and relate them to the Fukaya category of (Y,W).
Prove the conjecture!
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Thank You!
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